Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
CBE Life Sci Educ ; 23(2): ar19, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38640405

RESUMO

Scientific practices are the skills used to develop scientific knowledge and are essential for careers in science. Despite calls from education and government agencies to cultivate scientific practices, there remains little evidence of how often students are asked to apply them in undergraduate courses. We analyzed exams from biology courses at 100 institutions across the United States and found that only 7% of exam questions addressed a scientific practice and that 32% of biology exams did not test any scientific practices. The low occurrence of scientific practices on exams signals that undergraduate courses may not be integrating foundational scientific skills throughout their curriculum in the manner envisioned by recent national frameworks. Although there were few scientific practices overall, their close association with higher-order cognitive skills suggests that scientific practices represent a primary means to help students develop critical thinking skills and highlights the importance of incorporating a greater degree of scientific practices into undergraduate lecture courses and exams.


Assuntos
Estudantes , Pensamento , Humanos , Currículo , Biologia/educação
2.
CBE Life Sci Educ ; 22(2): ar27, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37115648

RESUMO

Biology instructors use concept assessments in their courses to gauge student understanding of important disciplinary ideas. Instructors can choose to administer concept assessments based on participation (i.e., lower stakes) or the correctness of responses (i.e., higher stakes), and students can complete the assessment in an in-class or out-of-class setting. Different administration conditions may affect how students engage with and perform on concept assessments, thus influencing how instructors should interpret the resulting scores. Building on a validity framework, we collected data from 1578 undergraduate students over 5 years under five different administration conditions. We did not find significant differences in scores between lower-stakes in-class, higher-stakes in-class, and lower-stakes out-of-class conditions, indicating a degree of equivalence among these three options. We found that students were likely to spend more time and have higher scores in the higher-stakes out-of-class condition. However, we suggest that instructors cautiously interpret scores from this condition, as it may be associated with an increased use of external resources. Taken together, we highlight the lower-stakes out-of-class condition as a widely applicable option that produces outcomes similar to in-class conditions, while respecting the common desire to preserve classroom instructional time.


Assuntos
Biologia , Estudantes , Humanos , Biologia/educação
3.
CBE Life Sci Educ ; 20(2): ar20, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33797284

RESUMO

The General Biology-Measuring Achievement and Progression in Science (GenBio-MAPS) assessment measures student understanding of the Vision and Change core concepts at the beginning, middle, and end of undergraduate biology degree programs. Assessment coordinators typically administer this instrument as a low-stakes assignment for which students receive participation credit. While these conditions can elicit high participation rates, it remains unclear how to best measure and account for potential variation in the amount of effort students give to the assessment. To better understand student test-taking motivation, we analyzed GenBio-MAPS data from more than 8000 students at 20 institutions. While the majority of students give acceptable effort, some students exhibited behaviors associated with low motivation, such as low self-reported effort, short test completion time, and high levels of rapid-selection behavior on test questions. Standard least-squares regression models revealed that students' self-reported effort predicts their observable time-based behaviors and that these motivation indices predict students' GenBio-MAPS scores. Furthermore, we observed that test-taking behaviors and performance change as students progress through the assessment. We provide recommendations for identifying and filtering out data from students with low test-taking motivation so that the filtered data set better represents student understanding.


Assuntos
Motivação , Habilidades para Realização de Testes , Logro , Avaliação Educacional , Humanos , Estudantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...