Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(9): 10371-10379, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38463284

RESUMO

Nanocellulose derived from hemp (HNC) with the addition of silver nanoparticles (AgNPs) is utilized for improving the electrochemical sensing performances for lactate detection. Initially, HNC is chemically extracted and purified by using alkali treatment and acid hydrolysis. Then, AgNPs are nucleated in situ by the self-reduction process prior to forming a composite with poly(vinyl alcohol) (PVA). This nanocomposite significantly improves the electrochemical properties of the electrode, including electrochemical conductivity and electrocatalysis. The morphologies and chemical alterations of the HNC/AgNPs-PVA nanocomposite are investigated by field emission scanning electron microscopy. It demonstrates a three-dimensional network with random orientation of the nanocellulose fiber. The AgNPs are well-dispersed in the nanocomposite. Moreover, the nanocomposite provides high thermal stability up to 450 °C. Then, it is remarkably noted that 10 wt % HNC/AgNPs-PVA modified on the electrode provides the highest current responses, with a standard redox couple [(Fe(CN)6]3-/4-]. For lactate detection, this modified screen-printed graphene electrode with nonimmobilized lactate oxidase exhibits an increase in the current signal with the increment of lactate concentration and offered a linear range of 0-25 mM, covering a cutoff value (12.5 mM) for muscle fatigue indication. Eventually, this sensor is successfully applied for lactate detection with high potential for a wearable lactate sensor.

2.
Polymers (Basel) ; 16(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38399825

RESUMO

In this work, smart edible coating and films with excellent UV barrier properties were prepared from alginate, whey protein isolate, and curcumin. The primary focus of this investigation centered on assessing the impact of whey protein and curcumin on the physical and functional properties of the alginate films. Whey protein reduced the film transparency while simultaneously enhancing the hydrophobicity and antioxidant properties of the alginate film. Curcumin imparted a yellow hue to the film, consequently decreasing the transparency of the film. It also substantially improved hydrophobicity, antioxidant activity, and UV-blocking efficiency within the films. Remarkably, curcumin demonstrated a significant reduction in the water vapor transmission rate of the film. For the preservation of apples, a higher concentration of curcumin was required, which effectively suppressed the respiration rate and moisture loss post-harvest, resulting in an extended shelf-life for the apples. As a result, the coated apples exhibited significantly reduced enzymatic browning and weight loss in comparison to their uncoated counterparts. Furthermore, these curcumin-containing films underwent a reversible color change from orange to red when exposed to ammonia vapor. This attribute highlights the potential of the developed coating and film as a smart, active food packaging solution, particularly for light-sensitive food products.

3.
Polymers (Basel) ; 15(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37896343

RESUMO

Cellulose nanocrystals (CNCs) were successfully extracted and purified from hemp using an alkaline treatment and bleaching process and subsequently used in conjunction with polyvinyl alcohol to form a composite hydrogel. Cellulose nanocrystals (1-10% (w/v)) were integrated into polyvinyl alcohol, and sodium tetraborate (borax) was employed as a crosslinking agent. Due to the small number of cellulose nanocrystals, no significant peak change was observed in the FT-IR spectra compared to pristine polyvinyl alcohol. The porosity was created upon the removal of the water molecules, and the material was thermally stable up to 200 °C. With the presence of cellulose nanocrystals, the melting temperature was slightly shifted to a higher temperature, while the glass transition temperature remained practically unchanged. The swelling behavior was examined for 180 min in deionized water and PBS solution (pH 7.4) at 37 °C. The degree of swelling of the composite with cellulose nanocrystals was found to be higher than that of pristine PVA hydrogel. The cell viability (%) of the prepared hydrogel with different proportions of cellulose nanocrystals was higher than that of pristine PVA hydrogel. Based on the results, the prepared composite hydrogels from cellulose nanocrystals extracted from hemp and polyvinyl alcohol were revealed to be an excellent candidate for scaffold material for medical usage.

4.
ACS Appl Mater Interfaces ; 15(39): 46085-46097, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37732796

RESUMO

Lanthanide organometallic complexes exhibit strong luminescence characteristics, owing to their antenna effects. The f-d energy level transition causes this phenomenon, which occurs when ligands and the external electrons of lanthanide metals coordinate. Based on this phenomenon, we used two lanthanide metals, europium (Eu) and terbium (Tb), in the present study as the metal center for iminodiacetic acid ligands. Further, we developed the resulting fluorescent organometallic complex as a smart material. The ligand-metal bond in the material functioned as a metal chelating agent and a cross-linking agent in a dynamically coordinated form, thereby prompting the material to self-heal. Temperature-sensitive poly-N-isopropylacrylamide was incorporated into the material as the polymer backbone. Afterward, we combined it with water-soluble poly(vinyl alcohol) and an additional ligand from poly(acrylic acid) to fabricate a high-performance hydrogel composite material. The shrinkage and expansion of the polymer form a grid between the materials. Because of the different coordination stabilities of Eu3+ and Tb3+, the corresponding material exhibits environmental responses toward excitation wavelength, temperature, and pH, thus generating different colors. When used in fabrics, the cross-linking mechanism of the material effectively looped the material between fabric fibers; furthermore, the temperature sensitivity of the polymer adjusted the size of pores between fabric fibers. At relatively higher temperatures (>32 °C), the polymer structure shrank, fiber pores expanded, and air permeability improved. Thus, this material appears to be promising for use in smart textiles.

5.
Gels ; 9(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37754389

RESUMO

A simple and cost-effective method for the fabrication of a safe, dual-responsive, highly stretchable, self-healing and injectable hydrogel is reported based on a combination of dynamic boronate ester bonds and hydrogen bonding interactions. The mechanical properties of the hydrogel are tunable by adjusting the molar ratios between sugar moieties on the polymer and borax. It was remarkable to note that the 2:1 ratio of sugar and borate ion significantly improves the mechanical strength of the hydrogel. The injectability, self-healing and stretchability properties of the hydrogel were also examined. In addition, the impact of the variation of the pH and the addition of free sugar responsiveness of the hydrogel was studied. High MRC-5 cell viability was noticed by the 3D live/dead assay after 24 h cell culture within the hydrogel scaffold. Hence, the developed hydrogels have desirable features that warrant their applications for drug delivery, scaffolds for cell and tissue engineering.

6.
Int J Biol Macromol ; 248: 125844, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37455000

RESUMO

Sulfonated cellulose (SC) was successfully prepared through a two-step process of gamma radiation and subsequently sulfonation with potassium metabisulfite of microcrystalline cellulose extracted from sugarcane bagasse. The effect of gamma radiation dose on cellulose showed an increment of oxidation degree, which was evidenced by the intensity ratio of I1718 (carbonyl)/ I2892 (aliphatic) from FTIR analysis. The obtained SC was introduced into polyether block amide/polyethylene glycol diacrylate (PEBAX/PEGDA) polymer matrix as a reinforcement and hydrophilic filler for improving electrolyte affinity and thermal stability of its composite membrane. The increase of SC in PEBAX/PEGDA composite membranes resulted in enhancement of hydrophilicity, electrolyte uptake, and thermal stability compared to pristine composite membranes. However, the excess SC content in the composite membrane exhibited the low physical properties, caused by negligible dispersion on the surface membrane. With the optimum 2.0 wt% SC in PEBAX/PEGDA, the porosity, contact angle and electrolyte uptake capacity was found to be 64.0 %, 12.8° and 37.5 %, respectively. 2.0 wt% SC/PEBAX/PEGDA showed the outstanding thermal stability with negligible shrinkage <10 % at 150 °C whereas pristine PEBAX/PEGDA showed the shrinkage of 29 %. The obtained SC/PEBAX/PEGDA composite membrane is considered as a potential candidate to replace the commercial polyolefin-based separator in lithium-ion batteries.


Assuntos
Celulose , Saccharum , Celulose/química , Raios gama , Polietilenoglicóis/química , Alcanossulfonatos
7.
ACS Appl Mater Interfaces ; 15(19): 23834-23843, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37140618

RESUMO

Cannabidiol (CBD) has been shown to have antioxidant and antibacterial effects. The investigation into CBD's potential as an antioxidant and antibacterial agent, meanwhile, is still in its initial stages. The study goals were to prepare encapsulated cannabidiol isolate (eCBDi), evaluate the effect of eCBDi edible active coatings on the physicochemical properties of strawberries, and determine whether CBD and sodium alginate coatings could be used as a postharvest treatment to promote antioxidation and antimicrobial activity and prolong the strawberry shelf life. A well-designed edible coating on the strawberry surface was achieved using eCBDi nanoparticles in combination with a sodium alginate polysaccharide-based solution. Strawberries were examined for their visual appearance and quality parameters. In the results, a significantly delayed deterioration was observed in terms of weight loss, total acidity, pH, microbial activity, and antioxidant activity for coated strawberries compared to the control. This study demonstrates the capability of eCBDi nanoparticles as an efficient active food coating agent.


Assuntos
Canabidiol , Filmes Comestíveis , Fragaria , Nanopartículas , Antioxidantes/química , Conservação de Alimentos/métodos , Canabidiol/farmacologia , Frutas/química , Antibacterianos/análise , Alginatos
8.
J Biomed Mater Res B Appl Biomater ; 111(6): 1207-1223, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36718607

RESUMO

Cuttlebone (CB) is a marine waste-derived biomaterial and a rich source of calcium carbonate for the biosynthesis of the calcium phosphate (CaP) particles. The current study aimed to synthesize CB derived biphasic calcium phosphate (CB-BCP) and investigate biological activity of the CB-CaP: hydroxyapatite (CB-HA), beta-tricalcium phosphate (CB-b-TCP) and biphasic 60:40 (w/w) HA/b-TCP (CB-BCP) with the human dental pulp stem cells (hDPSCs). The particles were synthesized using solid state reactions under mild condition and properties of the particles were compared with a commercial BCP as a reference material. Morphology, particle size, physicochemical properties, mineral contents, and the ion released patterns of the particles were examined. Then the particle/cell interaction, cell cytotoxicity and osteogenic property of the particles were investigated in the direct and indirect cell culture models. It was found that an average particles size of the CB-HA was 304.73 ± 4.19 nm, CB-b-TCP, 503.17 ± 23.06 nm and CB-BCP, 1394.67 ± 168.19 nm. The physicochemical characteristics of the CB-CaP were consistent with the HA, b-TCP and BCP. The highest level of calcium (Ca) was found in the mineral contents and the preincubated medium of the CB-BCP and traces of fluoride, magnesium, strontium, and zinc were identified in the CB-CaP. The cell cytotoxicity and osteogenic property of the particles were dose dependent. The particles adhered on cell surface and were internalized into the cell cytoplasm. The CB-BCP and CB-HA indirectly and directly promote osteoblastic differentiations of the hDPSCs in stronger levels than other groups. The CB-BCP and CB-HA were potential bioactive bone substitute materials.


Assuntos
Substitutos Ósseos , Humanos , Substitutos Ósseos/farmacologia , Substitutos Ósseos/química , Hidroxiapatitas/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Durapatita/química , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química
9.
Macromol Biosci ; 23(2): e2200372, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36353915

RESUMO

Over the past decade, the use of polysaccharides has gained tremendous attention in the field of medical technology. They have been applied in various sectors such as tissue engineering, drug delivery system, face mask, and bio-sensing. This review article provides an overview and background of polysaccharides for biomedical uses. Different types of polysaccharides, for example, cellulose and its derivatives, chitin and chitosan, hyaluronic acid, alginate, and pectin are presented. They are fabricated in various forms such as hydrogels, nanoparticles, membranes, and as porous mediums. Successful development and improvement of polysaccharide-based materials will effectively help users to enhance their quality of personal health, decrease cost, and eventually increase the quality of life with respect to sustainability.


Assuntos
Quitosana , Qualidade de Vida , Polissacarídeos/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Alginatos , Engenharia Tecidual/métodos , Materiais Biocompatíveis
10.
Anal Chim Acta ; 1179: 338643, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34535258

RESUMO

Over the past decade, non-invasive wearable chemical sensors have gained tremendous attention in the field of personal health monitoring and medical diagnosis. These sensors provide non-invasive, real-time, and continuous monitoring of targeted biomarkers with more simplicity than the conventional diagnostic approaches. This review primarily describes the substrate materials used for sensor fabrication, sample collection and handling, and analytical detection techniques that are utilized to detect biomarkers in different biofluids. Common substrates including paper, textile, and hydrogel for wearable sensor fabrication are discussed. Principles and applications of colorimetric and electrochemical detection in wearable chemical sensors are illustrated. Data transmission systems enabling wireless communication between the sensor and output devices are also discussed. Finally, examples of different designs of wearable chemical sensors including tattoos, garments, and accessories are shown. Successful development of non-invasive wearable chemical sensors will effectively help users to manage their personal health, predict the potential diseases, and eventually improve the overall quality of life.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Qualidade de Vida , Têxteis
11.
Int J Biol Macromol ; 162: 1937-1943, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32827618

RESUMO

In this work, biopolymer hydrogels were synthesized by mixing hyaluronic acid, hydrolyzed collagen, and chitosan through a solvent evaporation method and incorporating them with caffeic acid as an antioxidant agent. The obtained caffeic acid-loaded chitosan/hydrolyzed collagen/hyaluronic acid hydrogels were characterized by X-ray diffraction, differential scanning calorimetry and thermogravimetric analysis. No significant change on structural and thermal properties was observed. Furthermore, scanning electron microscope reported that the surface morphology of the hydrogels was smooth, and no significant change in porosity was observed after the addition of hyaluronic acid. With high amount of hyaluronic acid, the swelling behaviour was superiority. The hydrogels showed an initial burst release of caffeic acid (~70%) within 60 min, followed by a gradual release of up to 80% by 480 min. The release was slightly higher with the presence of hyaluronic acid. In addition, DPPH, ABTS+, and FRAP assays revealed that the caffeic acid-loaded hyaluronic acid/hydrolyzed collagen/chitosan hydrogels exhibited antioxidant activity. Thus, these composites could potentially be used as dressing materials with antioxidant activity.


Assuntos
Ácidos Cafeicos/química , Quitosana/química , Colágeno/química , Ácido Hialurônico/química , Hidrogéis/química , Antioxidantes/química , Porosidade
12.
Data Brief ; 3: 47-50, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26217716

RESUMO

The role of modified clay has been employed in many areas of engineering research. Structure of clay was mainly focused on alumino-silicate layer and its form was presented as pillar layer. It composed of many ion exchanges inside. In industry, in order to use clay with higher efficiency, modification on surface and porosity has been developed. CTAB, one of the most effective cationic surfactant, was employed to modify the surface and porosity of clay.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...