Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Indian J Med Microbiol ; 43: 1-7, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36244849

RESUMO

PURPOSE: Antibiotic resistant bacteria have created serious health conditions worldwide, disseminating various infections to people and community along with direct clinical implications in therapeutic options. METHODS: The present study analysed 20 samples from human faeces of Apatani tribe, Arunachal Pradesh, India. Biofilm assay, antimicrobial susceptibility tests and antimicrobial profiling were performed along with phylogenetic analysis. RESULTS: Phenotypic screening indicated the presence of 21 aerobic isolates comprising Escherichia sp 42.8% (n â€‹= â€‹9), Citrobacter sp 9.52% (n â€‹= â€‹2), Klebsiella sp 23.8% (n â€‹= â€‹5) and Enterococcus sp 23.8% (n â€‹= â€‹5). Tetracycline, ciprofloxacin, ceftadizime, gentamicine, vancomycin and erythromycin were observed to highly dominate the biofilm producing bacteria. Antimicrobial activity of Escherichia sp, Citrobacter sp, Klebsiella sp, and Enterococcus sp inhibited the growth of at least one of the tested pathogens. Phylogenetic analysis revealed that antibiotic resistant Klebsiella sp belonged to Klebsiella pneumonia; Escherichia sp belonged to Escherichia fergusonii and Escherichia coli; Enterococcus sp belonged to Enterococcus faecium while Citrobacter sp belonged to Citrobacter freundii. CONCLUSION: The present work shows that antibiotic resistant bacteria-Klebsiella sp, Enterococcus sp, Escherichia sp and Citrobacter sp were highly prevalent in the faecal microbial communities of Apatani tribe from Arunachal Pradesh. Presence of such antibiotic resistance and biofilm formation in faecal microbiota poses serious concerns regarding health and therapeutic options as this tribe mostly resides in remote vicinities of Arunachal Pradesh. Thus, exploring the mechanisms for dissemination of antibiotic resistance in this tribe helped us to identify key factors pertaining to the health of this tribe as well as their environment.


Assuntos
Farmacorresistência Bacteriana , Enterococcus faecium , Humanos , Filogenia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Enterococcus , Escherichia coli , Biofilmes , Fezes/microbiologia
2.
Sci Rep ; 12(1): 18296, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316382

RESUMO

Gut microbiota studies of ethnic populations reveal gut microbial biomarkers for therapeutic options and detection of the disease state. The present study aimed to analyze the gut microbiome signatures in thirty individuals from the Adi, Apatani and Nyshi tribes of Arunachal Pradesh (ten in each cohort) by sequencing the V3 and V4 regions of 16S rRNA on the Illumina MiSeq Platform. The gut microbiome was highly predominated by Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidates in the three studied tribal groups. At the genus level, significant abundance of Bifidobacterium, Collinsella, Bacteroides, Prevotella, Lactobacillus, Streptococcus, Clostridium, Coprococcus, Dorea, Lachnospira, Roseburia, Ruminococcus, Faecalibacterium, Catenibacterium, Eubacterium, Citrobacter and Enterobacter were observed amongst the three tribes. The tribal communities residing in remote areas and following traditional lifestyle had higher gut microbiome diversity with a high prevalence of Prevotella and Collinsella in the Adi and Nyshi tribes, and Bifidobacterium and Catenibacterium in the Apatani tribe. Elucidating the gut microbiome of the tribal community of Arunachal Pradesh will add to the knowledge on relationships between microbial communities, dietary food factors, and the overall state of health of humans worldwide.


Assuntos
Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Fezes/microbiologia , Prevotella/genética , Bifidobacterium/genética , Comportamento Alimentar , Estilo de Vida
3.
Genes (Basel) ; 13(2)2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-35205308

RESUMO

Uncontrolled transmission of Mycobacterium tuberculosis (M. tuberculosis, MTB) drug resistant strains is a challenge to control efforts of the global tuberculosis program. Due to increasing multi-drug resistant (MDR) cases in Arunachal Pradesh, a northeastern state of India, the tracking and tracing of these resistant MTB strains is crucial for infection control and spread of drug resistance. This study aims to correlate the phenotypic DST, genomic DST (gDST) and phylogenetic analysis of MDR-MTB strains in the region. Of the total 200 samples 22 (11%) patients suspected of MDR-TB and 160 (80%) previously treated MDR-TB cases, 125 (62.5%) were identified as MTB. MGIT-960 SIRE DST detected 71/125 (56.8%) isolates as MDR/RR-MTB of which 22 (30.9%) were detected resistant to second-line drugs. Whole-genome sequencing of 65 isolates and their gDST found Ser315Thr mutation in katG (35/45; 77.8%) and Ser531Leu mutation in rpoB (21/41; 51.2%) associated with drug resistance. SNP barcoding categorized the dataset with Lineage2 (41; 63.1%) being predominant followed by Lineage3 (10; 15.4%), Lineage1 (8; 12.3%) and Lineage4 (6; 9.2%) respectively. Phylogenetic assignment by cgMLST gave insights of two Beijing sub-lineages viz; 2.2.1 (SNP difference < 19) and 2.2.1.2 (SNP difference < 9) associated with recent ongoing transmission in Arunachal Pradesh. This study provides insights in identifying two virulent Beijing sub-lineages (sub-lineage 2.2.1 and 2.2.1.2) with ongoing transmission of TB drug resistance in Arunachal Pradesh.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Mycobacterium tuberculosis/genética , Filogenia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
4.
Appl Biochem Biotechnol ; 193(6): 1675-1687, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33660220

RESUMO

The fecal flora consists of trillions of bacteria influencing human health and several host factors. Such population-based fecal flora studies are critical to uplift the health status of ethnic tribes from Arunachal Pradesh. This study aimed to analyze the ethnic tribe's biofilm producing antibiotic resistant bacteria and their phyllogenetic analysis in 15 stool samples collected from Adi tribes of Arunachal Pradesh. Of the analyzed samples, 42.85% were Escherichia, 20% lactic acid bacteria, 20% Salmonella, and 17.14% Enterococcus. Escherichia coli, lactic acid bacteria, and Enterococcus sp. emerged as strong biofilm producers; however, Salmonella declined to exhibit characters for a strong biofilm producer. Tetracycline resistance dominated in all the gut bacterial profiles. The 16SrRNA amplified PCR product was used for sequencing, and a phylogenetic tree was constructed exhibiting the relationship between the isolates. The test sequences were compared with the non-redundant Gene bank collection of the database with the Basic Local Alignment Search Tool.


Assuntos
Anti-Infecciosos/metabolismo , Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Biofilmes/crescimento & desenvolvimento , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Filogenia , Bactérias/classificação , Humanos , Índia/etnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...