Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 11(1): 14591, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34272415

RESUMO

Granular mechanics codes use macroscopic laws to describe the damping of rolling and twisting motion in granular ensembles. We employ molecular dynamics simulation of amorphous Lennard-Jones grains to explore the applicability of these laws for nm-sized particles. We find the adhesive force to be linear in the intergrain attraction, as in the macroscopic theory. However, the damping torque of rolling motion is strongly superlinear in the intergrain attraction. This is caused by the strong increase of the 'lever arm' responsible for the damping torque-characterizing the asymmetry of the adhesive neck during rolling motion-with the surface energy of the grains. Also the damping torque of twisting motion follows the macroscopic theory based on sliding friction, which predicts the torque to increase whit the cube of the contact radius; here the dynamic increase of the contact radius with angular velocity is taken into account.

4.
J Mol Model ; 26(3): 54, 2020 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-32036483

RESUMO

Using molecular dynamics simulations, the adsorption and diffusion of doxorubicin drug molecules in boron nitride nanotubes are investigated. The interaction between doxorubicin and the nanotube is governed by van der Waals attraction. We find strong adsorption of doxorubicin to the wall for narrow nanotubes (radius of 9 Å). For larger radii (12 and 15 Å), the adsorption energy decreases, while the diffusion coefficient of doxorubicin increases. It does, however, not reach the values of pure water, as adsorption events still hinder the doxorubicin mobility. It is concluded that nanotubes wider than around 4 nm diameter can serve as efficient drug containers for targeted drug delivery of doxorubicin in cancer chemotherapy.


Assuntos
Compostos de Boro/química , Doxorrubicina , Sistemas de Liberação de Medicamentos , Modelos Químicos , Simulação de Dinâmica Molecular , Nanotubos/química , Doxorrubicina/química , Doxorrubicina/farmacocinética
5.
Nanoscale Res Lett ; 12(1): 637, 2017 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-29273975

RESUMO

Granular collisions are characterized by a threshold velocity, separating the low-velocity regime of grain sticking from the high-velocity regime of grain bouncing: the bouncing velocity, v b . This parameter is particularly important for nanograins and has applications for instance in astrophysics where it enters the description of collisional dust aggregation. Analytic estimates are based on the macroscopic Johnson-Kendall-Roberts (JKR) theory, which predicts the dependence of v b on the radius, elastic stiffness, and surface adhesion of grains. Here, we perform atomistic simulations with model potentials that allow us to test these dependencies for nanograin collisions. Our results not only show that JKR describes the dependence on materials parameters qualitatively well, but also point at considerable quantitative deviations. These are the most pronounced for small adhesion, where elastic stiffness does not influence the value of the bouncing velocity.

6.
Phys Chem Chem Phys ; 19(25): 16555-16562, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28612852

RESUMO

Using molecular dynamics simulations, we study collisions between amorphous silica nanoparticles. Our silica model contains uncontaminated surfaces, that is, the effect of surface hydroxylation or of adsorbed water layers is excluded. For central collisions, we characterize the boundary between sticking and bouncing collisions as a function of impact velocity and particle size and quantify the coefficient of restitution. We show that the traditional Johnson-Kendall-Roberts (JKR) model provides a valid description of the ingoing trajectory of two grains up to the moment of maximum compression. The distance of closest approach is slightly underestimated by the JKR model, due to the appearance of plasticity in the grains, which shows up in the form of localized shear transformation zones. The JKR model strongly underestimates the contact radius and the collision duration during the outgoing trajectory, evidencing that the breaking of covalent bonds during grain separation is not well described by this model. The adhesive neck formed between the two grains finally collapses while creating narrow filaments joining the grains, which eventually tear.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...