Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38951397

RESUMO

Understanding seasonal variations in water quality is crucial for effective management of freshwater rivers amidst changing environmental conditions. This study employed water quality index (WQI), metal index (MI), and pollution indices (PI) to comprehensively assess water quality and pollution levels in Nyabarongo River of Rwanda. A dynamic driver-pressure-state-impact-response model was used to identify factors influencing quality management. Over 4 years (2018-2021), 69 samples were collected on a monthly basis from each of the six monitoring stations across the Nyabarongo River throughout the four different seasons. Maximum WQI values were observed during dry long (52.90), dry short (21.478), long rain (93.66), and short rain (37.4) seasons, classified according to CCME 2001 guidelines. Ion concentrations exceeded WHO standards, with dominant ions being HCO 3 - and Mg 2 + . Variations in water quality were influenced by factors such as calcium bicarbonate dominance in dry seasons and sodium sulfate dominance in rainy seasons. Evaporation and precipitation processes primarily influenced ionic composition. Metal indices (MI) exhibited wide ranges: long dry (0.2-433.0), short dry (0.1-174.3), long rain (0.1-223.7), and short rain (0.3-252.5). The hazard index values for Cu2+, Mn4+, Zn2+, and Cr3+ were below 1, ranging from 8.89E - 08 to 7.68E - 07 for adults and 2.30E - 07 to 5.02E - 06 for children through oral ingestion, and from 6.68E - 10 to 5.07E - 07 for adults and 6.61E - 09 to 2.54E - 06 for children through dermal contact. With a total carcinogenic risk of less than 1 for both ingestion and dermal contact, indicating no significant health risks yet send strong signals to Governmental management of the Nyabarongo River. Overall water quality was classified as marginal in long dry, poor in short dry, good in long rain, and poor again in short rain seasons.

2.
Sci Total Environ ; 886: 163734, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37120019

RESUMO

East Africa's air pollution levels are deteriorating due to anthropogenic and biomass burning emissions and unfavorable weather conditions. This study investigates the changes and influencing factors of air pollution in East Africa from 2001 to 2021. The study found that air pollution in the region is heterogeneous, with increasing trends observed in pollution hot spots (PHS) while it decreased in pollution cold spots (PCS). The analysis identified four major pollution periods: High Pollution period 1, Low Pollution period 1, High Pollution period 2, and Low Pollution period 2, which occur during Feb-Mar, Apr-May, Jun-Aug and Oct-Nov, respectively. The study also revealed that long range transport of pollutants to the study area is primarily influenced by distant sources from the eastern, western, southern, and northern part of the continent. The seasonal meteorological conditions, such as high sea level pressure in the upper latitudes, cold air masses from the northern hemisphere, dry vegetation, and a dry and less humid atmosphere from boreal winter, further impact the transport of pollutants. The concentrations of pollutants were found to be influenced by climate factors, such as temperature, precipitation, and wind patterns. The study identified different pollution patterns in different seasons, with some areas having minimal anthropogenic pollution due to high vegetation vigor and moderate precipitation. Using Ordinary Least Square (OLS) regression and Detrended Fluctuation Analysis (DFA), the study quantified the magnitude of spatial variation in air pollution. The OLS trends indicated that 66 % of pixels exhibited decreasing trends while 34 % showed increasing trends, and DFA results indicating that 36 %, 15 %, and 49 % of pixels exhibited anti-persistence, random, and persistence in air pollution, respectively. Areas in the region experiencing increasing or decreasing trends in air pollution, which can be used to prioritize interventions and resources for improving air quality, were also highlighted. It also identifies the driving forces behind air pollution trends, such as anthropogenic or biomass burning, which can inform policy decisions aimed at reducing air pollution emissions from these sources. The findings on the persistence, reversibility, and variability of air pollution can inform the development of long-term policies for improving air quality and protecting public health.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Tempo (Meteorologia) , Atmosfera/análise , Estações do Ano , Material Particulado/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...