Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 125(21): 215701, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33274989

RESUMO

We generalize the ensemble geometric phase, recently introduced to classify the topology of density matrices, to finite-temperature states of interacting systems in one spatial dimension (1D). This includes cases where the gapped ground state has a fractional filling and is degenerate. At zero temperature the corresponding topological invariant agrees with the well-known invariant of Niu, Thouless, and Wu. We show that its value at finite temperatures is identical to that of the ground state below some critical temperature T_{c} larger than the many-body gap. We illustrate our result with numerical simulations of the 1D extended superlattice Bose-Hubbard model at quarter filling. Here, a cyclic change of parameters in the ground state leads to a topological charge pump with fractional winding ν=1/2. The particle transport is no longer quantized when the temperature becomes comparable to the many-body gap, yet the winding of the generalized ensemble geometric phase is.

2.
Phys Rev Lett ; 124(24): 243601, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32639821

RESUMO

We investigate the number entropy S_{N}-which characterizes particle-number fluctuations between subsystems-following a quench in one-dimensional interacting many-body systems with potential disorder. We find evidence that in the regime which is expected to show many-body localization and where the entanglement entropy grows as S∼lnt as function of time t, the number entropy grows as S_{N}∼lnlnt, indicating continuing subdiffusive particle transport at a very slow rate. We demonstrate that this growth is consistent with a relation between entanglement and number entropy recently established for noninteracting systems.

3.
Phys Rev Lett ; 106(7): 077202, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21405538

RESUMO

The numerical simulation of quantum many-body dynamics is typically limited by the linear growth of entanglement with time. Recently numerical studies have shown that for 1D Bethe-integrable models the simulation of local operators in the Heisenberg picture can be efficient. Using the spin-1/2 XX chain as generic example of an integrable model that can be mapped to free fermions, we provide a simple explanation for this. We show furthermore that the same reduction of complexity applies to operators that have a high-temperature autocorrelation function which decays slower than exponential, i.e., with a power law. Thus efficient simulability may already be implied by a single conservation law as we will illustrate numerically for the spin-1 XXZ model.

4.
Phys Rev Lett ; 101(16): 163601, 2008 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-18999667

RESUMO

We propose and analyze a mechanism for Bose-Einstein condensation of stationary dark-state polaritons. Dark-state polaritons (DSPs) are formed in the interaction of light with laser-driven 3-level Lambda-type atoms and are the basis of phenomena such as electromagnetically induced transparency, ultraslow, and stored light. They have long intrinsic lifetimes and in a stationary setup, a 3D quadratic dispersion profile with variable effective mass. Since DSPs are bosons, they can undergo a Bose-Einstein condensation at a critical temperature which can be many orders of magnitude larger than that of atoms. We show that thermalization of polaritons can occur via elastic collisions mediated by a resonantly enhanced optical Kerr nonlinearity on a time scale short compared to the decay time. Finally, condensation can be observed by turning stationary into propagating polaritons and monitoring the emitted light.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...