Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 727: 138644, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32498214

RESUMO

The assessment of dissolved loadings and the sources of these elements in urban catchments' rivers is usually measured by punctual sampling or through high frequency sensors. Nevertheless, the combination of both methodologies has been less common even though the information they give is complementary. Major ion (Ca2+, Mg2+, Na+, K+, Cl-, SO42-, and alkalinity), organic matter (expressed as Dissolved Organic Carbon, DOC), and nutrients (NO3-, and PO43-) are punctually measured in the Deba river urban catchment (538 km2), in the northern part of the Iberian Peninsula (draining to the Bay of Biscay). Discharge, precipitation, and Electrical Conductivity (EC) are registered with a high frequency (10 min) in three gauging stations. The combination of both methodologies has allowed the assessment of major geochemical processes and the extent of impact of anthropogenic input on major composition of riverine water, as well as its spatial and temporal evolution. Three methodologies for loading estimation have been assessed and the error committed in the temporal aggregation is quantified. Results have shown that, even though carbonates dominate the draining area, the water major ion chemistry is governed by an evaporitic spring in the upper part of the catchment, while anthropogenic input is specially noted downstream of three wastewater treatment plants, in all nutrients and organic matter. The results of the present work illustrate how the combination of two monitoring methodologies allows for a better assessment of the spatial and temporal evolution on the major water quality in an urban catchment.

2.
Sci Total Environ ; 711: 135026, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32000333

RESUMO

In this study, multivariate statistical analyses were performed to develop water and sediment quality indexes, allowing us (i) to select with reliability the most appropriate chemical variables for the evaluation of river quality susceptibility; (ii) to weight the influence of each variable based on monitored data; (iii) to consider possible synergism or antagonism derived from the combined effect of several pollutants; and (iv) to express the quality as a deviation from selected site-specific reference conditions. For the establishment of these threshold/maximum values, combining two biological indicators related to denitrifying bacteria in sediments turned out to be applicable to ensure compliance with the European water quality standard. The joint implementation of water and sediment quality indexes assisted us in the rapid detection of the deleterious effect of different anthropogenic contamination sources, as well as the influence of hydrological regime seasonality on river quality. In addition, metal-dependent water quality appeared to be coupled to sediment dynamics, since they were preferentially adsorbed onto sediments during low flow seasons, whereas there was potential for metal mobilization to water during sediment resuspension in high flow seasons. Therefore, an annual determination of sediment quality index was also recommended as suitable tool for prospective monitoring water quality, identifying those sites which could deserve special attention during certain periods, and planning future strategies for river quality improvement. However, two limitations were found: (1) sediment was not appropriate for water physicochemical quality early monitoring due to organic matter and nutrient continuous transformation; and (2) a multimetric index did not provide a concise and definitive quality information, thus a new tool for combining with quality index was proposed for specifically evaluate the water and sediment quality by identifying pollutant/s of concern at each location.

3.
J Environ Sci (China) ; 75: 255-268, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30473291

RESUMO

A better understanding of the effects of a number of environmental factors on denitrification is vital for analyzing its role as nitrogen sink and providing deeper knowledge about the ecological status of a nitrate-rich ecosystem. Since few studies have addressed the occurrence and implications of denitrification in river sediments, and complexity of interactions among all these environmental factors makes comprehension of the process difficult, the potential of sediments from the Deba River to attenuate nitrate excess through denitrification was investigated. For this purpose, we adapted an in vitro method to measure activities of two enzymes contributing to the entire multiple-step nitrate reduction: Nitrate Reductase and Nitrite Reductase. The environmental features that influence both or single enzymatic activities were identified as oxygen availability, regulated directly by the moisture content or indirectly through the aerobic respiration, organic matter and nitrate content of sediments, and electrical conductivity and exchangeable sodium percentage of water. Additionally, our results showed that Nitrate Reductase catalyzes the principal limiting step of denitrification in sediments. Therefore, taking this enzymatic activity as an indicator, the southern part of the Deba River catchment presented low potential to denitrify but nitrate-limited sediments, whereas the middle and northern parts were characterized by high denitrification potential but nitrate-rich sediments. In general, this study on denitrifying enzymatic activities in sediments evaluates the suitability of the management of the effluents from wastewater treatment plants and municipal sewages to ensure a good ecological status of the Deba River.


Assuntos
Desnitrificação/fisiologia , Ecossistema , Monitoramento Ambiental/métodos , Enzimas/análise , Sedimentos Geológicos , Nitratos/análise , Nitrogênio/análise , Rios
4.
Sci Total Environ ; 646: 121-133, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30053662

RESUMO

In this study, non-destructive techniques (X-ray Diffraction, Infrared and Scanning Electron Microscopy with Energy Dispersive spectroscopies) and invasive procedures (pseudo-total and sequential metal extraction methodologies) were used to highlight the significance of evaluating different particle sizes of sediments for assessing the potential environmental and health implications of metal geochemistry in an urban ecosystem. The variability in composition and properties between bulk (<2 mm) and fine (<63 µm) fractions influenced the availability, and by extension, the toxicity of metals. Indeed, the fine fraction presented not only higher metal pseudo-contents, but also greater available metal percentages. Besides the larger surface area per unit of mass and the high content of clay minerals, it was observed that it was principally Fe/Mn oxyhydroxides that favour adsorption of metals on the fine surface sediments. However, although we demonstrated that the origin of metals in the bulk surface sediments was predominantly lithogenic, use of the <2 mm fraction proved to be a useful tool for identifying different sources of available metals throughout the Deba River catchment. Specifically, discharges of untreated industrial and urban wastewaters, and even effluents from wastewater treatment plants were considered to greatly increase the health risk associated with metal availability. Finally, an evaluation of sediment dynamics in different hydrological conditions has highlighted the role played by each particle size as a vector of metal transport towards the coastal area. While resuspension of fine surface sediments notably induced significantly higher particulate metal concentrations in water during the dry season, resuspension of bulk surface sediments and, fundamentally, downstream transport of suspended particulate matter became more relevant and lowered the ecological risk during the wet season. Greater attention therefore needs to be paid to the new hydrological scenarios forecast to result from climate change, in which longer seasons with low river discharges are forecast.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos/química , Metais/análise , Poluentes Químicos da Água/análise , Metais Pesados , Tamanho da Partícula
5.
Data Brief ; 19: 616-622, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29900361

RESUMO

In many urban catchments, the discharge of effluents from wastewater treatment plants (WWTPs), as well as untreated wastewaters (UWWs), presents a major challenge for the maintenance of river sediment and water quality. The discharge of these effluents cannot only increase the concentration of metals, nutrients and organic compounds in fluvial ecosystems, but also alter the abundance, structure and function of river bacterial communities. Here, we present data on chemical and biological quality parameters in wastewater-impacted and non-impacted river surface sediment and water samples. Overall, the concentration of nutrients (inorganic nitrogen) and some heavy metals (Zn, Ni and Cr) was positively correlated with the nirS/16S rRNA ratio, while nirK- and nosZ-denitrifier populations were negatively affected by the presence of ammonium in sediments. Bacterial community structure was significantly correlated with the (i) combined influence of nutrient and metal concentrations, (ii) the contamination level (non-impacted vs. impacted sites), (iii) type of contamination (WWTP or UWW), and (iv) location of the sampling sites. Moreover, the higher abundance of five genera of the family Rhodocyclaceae detected in wastewater-impacted sites is also likely to be an effect of effluent discharge. The data presented here complement a broader study (Martínez-Santos et al., 2018) [1] and they are particularly useful for those interested in understanding the impact of wastewater effluents on the abundance, structure and function of river bacterial communities involved in nitrogen cycling.

6.
Sci Total Environ ; 633: 1051-1061, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29758858

RESUMO

Studying the dynamics of nitrogen and sulphur cycling bacteria in river surface sediments is essential to better understand their contribution to global biogeochemical cycles. Evaporitic rocks settled at the headwater of the Deba River catchment (northern Spain) lead to high values of sulphate concentration in its waters. Besides, the discharge of effluents from untreated and treated residual (urban and industrial) wastewaters increases the concentration of metals, nutrients and organic compounds in its mid- and low-water courses. The aim of this study was to assess the impact of anthropogenic contamination from untreated and treated residual and industrial wastewaters on the structure and function of bacterial communities present in surface sediments of the Deba River catchment. The application of a quantitative functional approach (qPCR) based on denitrification genes (nir: nirS+nirK; and nosZ), together with a 16S rRNA gene metabarcoding structural analysis, revealed (i) the high relevance of the sulphur cycle at headwater surface sediments (as reflected by the abundance of members of the Syntrophobacterales order, and the Sulfuricurvum and Thiobacillus genera) and (ii) the predominance of sulphide-driven autotrophic denitrification over heterotrophic denitrification. Incomplete heterotrophic denitrification appeared to be predominant in surface sediments strongly impacted by treated and untreated effluents, as reflected by the lower values of the nosZ/nir ratio, thus favouring N2O emissions. Understanding nitrogen and sulphur cycling pathways has profound implications for the management of river ecosystems, since this knowledge can help us determine whether a specific river is acting or not as a source of greenhouse gases (i.e., N2O).


Assuntos
Sedimentos Geológicos/microbiologia , Ciclo do Nitrogênio/fisiologia , Rios/microbiologia , Enxofre/metabolismo , Eliminação de Resíduos Líquidos , Águas Residuárias/química , Desnitrificação , Sedimentos Geológicos/química , Nitrogênio/metabolismo , RNA Ribossômico 16S , Rios/química , Espanha , Águas Residuárias/microbiologia
7.
Ecotoxicol Environ Saf ; 138: 260-270, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28081488

RESUMO

In the present study, the physiologically based extraction test PBET (gastric and intestinal phases) and two chemical based extraction methods, the toxicity characteristic leaching procedure (TCLP) and the sequential extraction procedure BCR 701 (Community Bureau of Reference of the European Commission) have been used to estimate and evaluate the bioaccessibility of metals (Fe, Mn, Zn, Cu, Ni, Cr and Pb) in sediments from the Deba River urban catchment. The statistical analysis of data and comparison among physiological and chemical methods have highlighted the relevance of simulate the gastrointestinal tract environment since metal bioaccessibility seems to depend on water and sediment properties such as pH, redox potential and organic matter content, and, primordially, on the form in which metals are present in the sediment. Indeed, metals distributed among all fractions (Mn, Ni, Zn) were the most bioaccessible, followed by those predominantly bound to oxidizable fraction (Cu, Cr and Pb), especially near major urban areas. Finally, a toxicological risk assessment was also performed by determining the hazard quotient (HQ), which demonstrated that, although sediments from mid- and downstream sampling points presented the highest metal bioaccessibilities, were not enough to have adverse effects on human health, Cr being the most potentially toxic element.


Assuntos
Sedimentos Geológicos/química , Metais Pesados/análise , Metais Pesados/farmacocinética , Rios/química , Disponibilidade Biológica , Pré-Escolar , Cidades , Monitoramento Ambiental/métodos , Humanos , Metais Pesados/toxicidade , Medição de Risco , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/farmacocinética , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...