Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Eur J Hum Genet ; 29(1): 164-172, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32636469

RESUMO

We set out to identify the origins of the Árpád Dynasty based on genome sequencing of DNA derived from the skeletal remains of Hungarian King Béla III (1172-1196) and eight additional individuals (six males, two females) originally interred at the Royal Basilica of Székesfehérvár. Y-chromosome analysis established that two individuals, Béla III and HU52 assign to haplogroups R-Z2125 whose distribution centres near South Central Asia with subsidiary expansions in the regions of modern Iran, the Volga Ural region and the Caucasus. Out of a cohort of 4340 individuals from these geographic areas, we acquired whole-genome data from 208 individuals derived for the R-Z2123 haplogroup. From these data we have established that the closest living kin of the Árpád Dynasty are R-SUR51 derived modern day Bashkirs predominantly from the Burzyansky and Abzelilovsky districts of Bashkortostan in the Russian Federation. Our analysis also reveals the existence of SNPs defining a novel Árpád Dynasty specific haplogroup R-ARP. Framed within the context of a high resolution R-Z2123 phylogeny, the ancestry of the first Hungarian royal dynasty traces to the region centering near Northern Afghanistan about 4500 years ago and identifies the Bashkirs as their closest kin, with a separation date between the two populations at the beginning of the first millennium CE.


Assuntos
Cromossomos Humanos Y/genética , Pessoas Famosas , Linhagem , Filogenia , Polimorfismo de Nucleotídeo Único , Feminino , Migração Humana , Humanos , Hungria , Masculino , Análise de Sequência de DNA/métodos
3.
Eur J Hum Genet ; 27(1): 125-132, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30143806

RESUMO

Red cell polymorphisms can provide evidence of human migration and adaptation patterns. In Eurasia, the distribution of Diego blood group system polymorphisms remains unaddressed. To shed light on the dispersal of the Dia antigen, we performed analyses of correlations between the frequencies of DI*01 allele, C2-M217 and C2-M401 Y-chromosome haplotypes ascribed as being of Mongolian-origin and language affiliations, in 75 Eurasian populations including DI*01 frequency data from the HGDP-CEPH panel. We revealed that DI*01 reaches its highest frequency in Mongolia, Turkmenistan and Kyrgyzstan, expanding southward and westward across Asia with Altaic-speaking nomadic carriers of C2-M217, and even more precisely C2-M401, from their homeland presumably in Mongolia, between the third century BCE and the thirteenth century CE. The present study has highlighted the gene-culture co-migration with the demographic movements that occurred during the past two millennia in Central and East Asia. Additionally, this work contributes to a better understanding of the distribution of immunogenic erythrocyte polymorphisms with a view to improve transfusion safety.


Assuntos
Proteína 1 de Troca de Ânion do Eritrócito/genética , Povo Asiático/genética , Migração Humana , Polimorfismo Genético , Ásia , Cromossomos Humanos Y/genética , Feminino , Haplótipos , Humanos , Masculino
4.
Proc Natl Acad Sci U S A ; 115(26): 6774-6779, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29895688

RESUMO

The extent to which prehistoric migrations of farmers influenced the genetic pool of western North Africans remains unclear. Archaeological evidence suggests that the Neolithization process may have happened through the adoption of innovations by local Epipaleolithic communities or by demic diffusion from the Eastern Mediterranean shores or Iberia. Here, we present an analysis of individuals' genome sequences from Early and Late Neolithic sites in Morocco and from Early Neolithic individuals from southern Iberia. We show that Early Neolithic Moroccans (∼5,000 BCE) are similar to Later Stone Age individuals from the same region and possess an endemic element retained in present-day Maghrebi populations, confirming a long-term genetic continuity in the region. This scenario is consistent with Early Neolithic traditions in North Africa deriving from Epipaleolithic communities that adopted certain agricultural techniques from neighboring populations. Among Eurasian ancient populations, Early Neolithic Moroccans are distantly related to Levantine Natufian hunter-gatherers (∼9,000 BCE) and Pre-Pottery Neolithic farmers (∼6,500 BCE). Late Neolithic (∼3,000 BCE) Moroccans, in contrast, share an Iberian component, supporting theories of trans-Gibraltar gene flow and indicating that Neolithization of North Africa involved both the movement of ideas and people. Lastly, the southern Iberian Early Neolithic samples share the same genetic composition as the Cardial Mediterranean Neolithic culture that reached Iberia ∼5,500 BCE. The cultural and genetic similarities between Iberian and North African Neolithic traditions further reinforce the model of an Iberian migration into the Maghreb.


Assuntos
Etnicidade/genética , Genoma Humano , Migração Humana/história , África do Norte , Agricultura/história , Cromossomos Humanos Y/genética , DNA Mitocondrial/genética , Etnicidade/história , Europa (Continente) , Fluxo Gênico , Biblioteca Gênica , Genética Populacional , História Antiga , Humanos , Oriente Médio , Marrocos , Análise de Sequência de DNA , Espanha/etnologia
5.
Am J Hum Genet ; 99(1): 163-73, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27392075

RESUMO

The paternal haplogroup (hg) N is distributed from southeast Asia to eastern Europe. The demographic processes that have shaped the vast extent of this major Y chromosome lineage across numerous linguistically and autosomally divergent populations have previously been unresolved. On the basis of 94 high-coverage re-sequenced Y chromosomes, we establish and date a detailed hg N phylogeny. We evaluate geographic structure by using 16 distinguishing binary markers in 1,631 hg N Y chromosomes from a collection of 6,521 samples from 56 populations. The more southerly distributed sub-clade N4 emerged before N2a1 and N3, found mostly in the north, but the latter two display more elaborate branching patterns, indicative of regional contrasts in recent expansions. In particular, a number of prominent and well-defined clades with common N3a3'6 ancestry occur in regionally dissimilar northern Eurasian populations, indicating almost simultaneous regional diversification and expansion within the last 5,000 years. This patrilineal genetic affinity is decoupled from the associated higher degree of language diversity.


Assuntos
Cromossomos Humanos Y/genética , Haplótipos/genética , Idioma , Ásia , Europa (Continente) , Humanos , Filogeografia , Fatores de Tempo
6.
Nat Genet ; 48(6): 593-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27111036

RESUMO

We report the sequences of 1,244 human Y chromosomes randomly ascertained from 26 worldwide populations by the 1000 Genomes Project. We discovered more than 65,000 variants, including single-nucleotide variants, multiple-nucleotide variants, insertions and deletions, short tandem repeats, and copy number variants. Of these, copy number variants contribute the greatest predicted functional impact. We constructed a calibrated phylogenetic tree on the basis of binary single-nucleotide variants and projected the more complex variants onto it, estimating the number of mutations for each class. Our phylogeny shows bursts of extreme expansion in male numbers that have occurred independently among each of the five continental superpopulations examined, at times of known migrations and technological innovations.


Assuntos
Cromossomos Humanos Y , Demografia , Haplótipos , Humanos , Masculino , Mutação , Filogenia , Polimorfismo de Nucleotídeo Único
7.
Investig Genet ; 7: 1, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26870315

RESUMO

BACKGROUND: The archeological record indicates that the permanent settlement of Cyprus began with pioneering agriculturalists circa 11,000 years before present, (ca. 11,000 y BP). Subsequent colonization events followed, some recognized regionally. Here, we assess the Y-chromosome structure of Cyprus in context to regional populations and correlate it to phases of prehistoric colonization. RESULTS: Analysis of haplotypes from 574 samples showed that island-wide substructure was barely significant in a spatial analysis of molecular variance (SAMOVA). However, analyses of molecular variance (AMOVA) of haplogroups using 92 binary markers genotyped in 629 Cypriots revealed that the proportion of variance among the districts was irregularly distributed. Principal component analysis (PCA) revealed potential genetic associations of Greek-Cypriots with neighbor populations. Contrasting haplogroups in the PCA were used as surrogates of parental populations. Admixture analyses suggested that the majority of G2a-P15 and R1b-M269 components were contributed by Anatolia and Levant sources, respectively, while Greece Balkans supplied the majority of E-V13 and J2a-M67. Haplotype-based expansion times were at historical levels suggestive of recent demography. CONCLUSIONS: Analyses of Cypriot haplogroup data are consistent with two stages of prehistoric settlement. E-V13 and E-M34 are widespread, and PCA suggests sourcing them to the Balkans and Levant/Anatolia, respectively. The persistent pre-Greek component is represented by elements of G2-U5(xL30) haplogroups: U5*, PF3147, and L293. J2b-M205 may contribute also to the pre-Greek strata. The majority of R1b-Z2105 lineages occur in both the westernmost and easternmost districts. Distinctively, sub-haplogroup R1b- M589 occurs only in the east. The absence of R1b- M589 lineages in Crete and the Balkans and the presence in Asia Minor are compatible with Late Bronze Age influences from Anatolia rather than from Mycenaean Greeks.

8.
Eur J Hum Genet ; 23(1): 124-31, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24667786

RESUMO

R1a-M420 is one of the most widely spread Y-chromosome haplogroups; however, its substructure within Europe and Asia has remained poorly characterized. Using a panel of 16 244 male subjects from 126 populations sampled across Eurasia, we identified 2923 R1a-M420 Y-chromosomes and analyzed them to a highly granular phylogeographic resolution. Whole Y-chromosome sequence analysis of eight R1a and five R1b individuals suggests a divergence time of ∼25,000 (95% CI: 21,300-29,000) years ago and a coalescence time within R1a-M417 of ∼5800 (95% CI: 4800-6800) years. The spatial frequency distributions of R1a sub-haplogroups conclusively indicate two major groups, one found primarily in Europe and the other confined to Central and South Asia. Beyond the major European versus Asian dichotomy, we describe several younger sub-haplogroups. Based on spatial distributions and diversity patterns within the R1a-M420 clade, particularly rare basal branches detected primarily within Iran and eastern Turkey, we conclude that the initial episodes of haplogroup R1a diversification likely occurred in the vicinity of present-day Iran.


Assuntos
Alelos , Cromossomos Humanos Y , Haplótipos , Filogenia , Filogeografia , Ásia , Etnicidade/genética , Europa (Continente) , Evolução Molecular , Frequência do Gene , Ligação Genética , Humanos , Masculino , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Análise Espacial
9.
PLoS Genet ; 10(5): e1004353, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24809476

RESUMO

Genome sequencing of the 5,300-year-old mummy of the Tyrolean Iceman, found in 1991 on a glacier near the border of Italy and Austria, has yielded new insights into his origin and relationship to modern European populations. A key finding of that study was an apparent recent common ancestry with individuals from Sardinia, based largely on the Y chromosome haplogroup and common autosomal SNP variation. Here, we compiled and analyzed genomic datasets from both modern and ancient Europeans, including genome sequence data from over 400 Sardinians and two ancient Thracians from Bulgaria, to investigate this result in greater detail and determine its implications for the genetic structure of Neolithic Europe. Using whole-genome sequencing data, we confirm that the Iceman is, indeed, most closely related to Sardinians. Furthermore, we show that this relationship extends to other individuals from cultural contexts associated with the spread of agriculture during the Neolithic transition, in contrast to individuals from a hunter-gatherer context. We hypothesize that this genetic affinity of ancient samples from different parts of Europe with Sardinians represents a common genetic component that was geographically widespread across Europe during the Neolithic, likely related to migrations and population expansions associated with the spread of agriculture.


Assuntos
Fósseis , Genética Populacional , Genoma Humano , Europa (Continente) , Feminino , Humanos , Polimorfismo de Nucleotídeo Único
10.
Nat Commun ; 4: 2928, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24346185

RESUMO

Previous Y-chromosome studies have demonstrated that Ashkenazi Levites, members of a paternally inherited Jewish priestly caste, display a distinctive founder event within R1a, the most prevalent Y-chromosome haplogroup in Eastern Europe. Here we report the analysis of 16 whole R1 sequences and show that a set of 19 unique nucleotide substitutions defines the Ashkenazi R1a lineage. While our survey of one of these, M582, in 2,834 R1a samples reveals its absence in 922 Eastern Europeans, we show it is present in all sampled R1a Ashkenazi Levites, as well as in 33.8% of other R1a Ashkenazi Jewish males and 5.9% of 303 R1a Near Eastern males, where it shows considerably higher diversity. Moreover, the M582 lineage also occurs at low frequencies in non-Ashkenazi Jewish populations. In contrast to the previously suggested Eastern European origin for Ashkenazi Levites, the current data are indicative of a geographic source of the Levite founder lineage in the Near East and its likely presence among pre-Diaspora Hebrews.


Assuntos
Cromossomos Humanos Y , Frequência do Gene , Haplótipos , Judeus/genética , Filogenia , Europa Oriental , Variação Genética , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
11.
PLoS One ; 8(10): e76748, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24204668

RESUMO

Despite being located at the crossroads of Asia, genetics of the Afghanistan populations have been largely overlooked. It is currently inhabited by five major ethnic populations: Pashtun, Tajik, Hazara, Uzbek and Turkmen. Here we present autosomal from a subset of our samples, mitochondrial and Y- chromosome data from over 500 Afghan samples among these 5 ethnic groups. This Afghan data was supplemented with the same Y-chromosome analyses of samples from Iran, Kyrgyzstan, Mongolia and updated Pakistani samples (HGDP-CEPH). The data presented here was integrated into existing knowledge of pan-Eurasian genetic diversity. The pattern of genetic variation, revealed by structure-like and Principal Component analyses and Analysis of Molecular Variance indicates that the people of Afghanistan are made up of a mosaic of components representing various geographic regions of Eurasian ancestry. The absence of a major Central Asian-specific component indicates that the Hindu Kush, like the gene pool of Central Asian populations in general, is a confluence of gene flows rather than a source of distinctly autochthonous populations that have arisen in situ: a conclusion that is reinforced by the phylogeography of both haploid loci.


Assuntos
Cromossomos Humanos Y/genética , DNA Mitocondrial/genética , Etnicidade/genética , Fluxo Gênico , Afeganistão/etnologia , Análise de Variância , Ásia/etnologia , Povo Asiático/genética , DNA Mitocondrial/química , DNA Mitocondrial/classificação , Europa (Continente)/etnologia , Variação Genética , Genética Populacional/métodos , Geografia , Haplótipos , Humanos , Filogenia , Filogeografia/métodos , Análise de Componente Principal , Análise de Sequência de DNA , População Branca/genética
12.
Science ; 341(6145): 562-5, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23908239

RESUMO

The Y chromosome and the mitochondrial genome have been used to estimate when the common patrilineal and matrilineal ancestors of humans lived. We sequenced the genomes of 69 males from nine populations, including two in which we find basal branches of the Y-chromosome tree. We identify ancient phylogenetic structure within African haplogroups and resolve a long-standing ambiguity deep within the tree. Applying equivalent methodologies to the Y chromosome and the mitochondrial genome, we estimate the time to the most recent common ancestor (T(MRCA)) of the Y chromosome to be 120 to 156 thousand years and the mitochondrial genome T(MRCA) to be 99 to 148 thousand years. Our findings suggest that, contrary to previous claims, male lineages do not coalesce significantly more recently than female lineages.


Assuntos
Cromossomos Humanos Y/classificação , Cromossomos Humanos Y/genética , Variação Genética , População Negra/genética , Evolução Molecular , Feminino , Genoma Mitocondrial/genética , Haploidia , Humanos , Masculino , Mutação , Filogenia , Análise de Sequência de DNA , Fatores de Tempo
13.
Hum Biol ; 85(6): 825-58, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25079122

RESUMO

The Samaritans are a group of some 750 indigenous Middle Eastern people, about half of whom live in Holon, a suburb of Tel Aviv, and the other half near Nablus. The Samaritan population is believed to have numbered more than a million in late Roman times but less than 150 in 1917. The ancestry of the Samaritans has been subject to controversy from late Biblical times to the present. In this study, liquid chromatography/electrospray ionization/quadrupole ion trap mass spectrometry was used to allelotype 13 Y-chromosomal and 15 autosomal microsatellites in a sample of 12 Samaritans chosen to have as low a level of relationship as possible, and 461 Jews and non-Jews. Estimation of genetic distances between the Samaritans and seven Jewish and three non-Jewish populations from Israel, as well as populations from Africa, Pakistan, Turkey, and Europe, revealed that the Samaritans were closely related to Cohanim. This result supports the position of the Samaritans that they are descendants from the tribes of Israel dating to before the Assyrian exile in 722-720 BCE. In concordance with previously published single-nucleotide polymorphism haplotypes, each Samaritan family, with the exception of the Samaritan Cohen lineage, was observed to carry a distinctive Y-chromosome short tandem repeat haplotype that was not more than one mutation removed from the six-marker Cohen modal haplotype.


Assuntos
Cromossomos Humanos Y/genética , Judeus/genética , Repetições de Microssatélites/genética , Variação Genética/genética , Genética Populacional , Genótipo , História Antiga , Humanos , Israel/etnologia , Judeus/história , Masculino , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA , Espectrometria de Massas por Ionização por Electrospray
14.
PLoS One ; 7(11): e48477, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23209554

RESUMO

Linguistic and genetic studies on Roma populations inhabited in Europe have unequivocally traced these populations to the Indian subcontinent. However, the exact parental population group and time of the out-of-India dispersal have remained disputed. In the absence of archaeological records and with only scanty historical documentation of the Roma, comparative linguistic studies were the first to identify their Indian origin. Recently, molecular studies on the basis of disease-causing mutations and haploid DNA markers (i.e. mtDNA and Y-chromosome) supported the linguistic view. The presence of Indian-specific Y-chromosome haplogroup H1a1a-M82 and mtDNA haplogroups M5a1, M18 and M35b among Roma has corroborated that their South Asian origins and later admixture with Near Eastern and European populations. However, previous studies have left unanswered questions about the exact parental population groups in South Asia. Here we present a detailed phylogeographical study of Y-chromosomal haplogroup H1a1a-M82 in a data set of more than 10,000 global samples to discern a more precise ancestral source of European Romani populations. The phylogeographical patterns and diversity estimates indicate an early origin of this haplogroup in the Indian subcontinent and its further expansion to other regions. Tellingly, the short tandem repeat (STR) based network of H1a1a-M82 lineages displayed the closest connection of Romani haplotypes with the traditional scheduled caste and scheduled tribe population groups of northwestern India.


Assuntos
Cromossomos Humanos Y , Etnicidade/genética , Haplótipos , Repetições de Microssatélites , Filogeografia , População Branca/genética , Ásia , DNA Mitocondrial , Europa (Continente) , Humanos , Filogenia
15.
Am J Phys Anthropol ; 148(3): 395-405, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22576278

RESUMO

The genetic characterization of Native Mexicans is important to understand multiethnic based features influencing the medical genetics of present Mexican populations, as well as to the reconstruct the peopling of the Americas. We describe the Y-chromosome genetic diversity of 197 Native Mexicans from 11 populations and 1,044 individuals from 44 Native American populations after combining with publicly available data. We found extensive heterogeneity among Native Mexican populations and ample segregation of Q-M242* (46%) and Q-M3 (54%) haplogroups within Mexico. The northernmost sampled populations falling outside Mesoamerica (Pima and Tarahumara) showed a clear differentiation with respect to the other populations, which is in agreement with previous results from mtDNA lineages. However, our results point toward a complex genetic makeup of Native Mexicans whose maternal and paternal lineages reveal different narratives of their population history, with sex-biased continental contributions and different admixture proportions. At a continental scale, we found that Arctic populations and the northernmost groups from North America cluster together, but we did not find a clear differentiation within Mesoamerica and the rest of the continent, which coupled with the fact that the majority of individuals from Central and South American samples are restricted to the Q-M3 branch, supports the notion that most Native Americans from Mesoamerica southwards are descendants from a single wave of migration. This observation is compatible with the idea that present day Mexico might have constituted an area of transition in the diversification of paternal lineages during the colonization of the Americas.


Assuntos
Cromossomos Humanos Y , Indígenas Norte-Americanos/genética , América , Variação Genética , Haplótipos/genética , Humanos , Indígenas Norte-Americanos/estatística & dados numéricos , Masculino , México , Repetições de Microssatélites , Filogenia
16.
Eur J Hum Genet ; 20(12): 1275-82, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22588667

RESUMO

Haplogroup G, together with J2 clades, has been associated with the spread of agriculture, especially in the European context. However, interpretations based on simple haplogroup frequency clines do not recognize underlying patterns of genetic diversification. Although progress has been recently made in resolving the haplogroup G phylogeny, a comprehensive survey of the geographic distribution patterns of the significant sub-clades of this haplogroup has not been conducted yet. Here we present the haplogroup frequency distribution and STR variation of 16 informative G sub-clades by evaluating 1472 haplogroup G chromosomes belonging to 98 populations ranging from Europe to Pakistan. Although no basal G-M201* chromosomes were detected in our data set, the homeland of this haplogroup has been estimated to be somewhere nearby eastern Anatolia, Armenia or western Iran, the only areas characterized by the co-presence of deep basal branches as well as the occurrence of high sub-haplogroup diversity. The P303 SNP defines the most frequent and widespread G sub-haplogroup. However, its sub-clades have more localized distribution with the U1-defined branch largely restricted to Near/Middle Eastern and the Caucasus, whereas L497 lineages essentially occur in Europe where they likely originated. In contrast, the only U1 representative in Europe is the G-M527 lineage whose distribution pattern is consistent with regions of Greek colonization. No clinal patterns were detected suggesting that the distributions are rather indicative of isolation by distance and demographic complexities.


Assuntos
Cromossomos Humanos 21-22 e Y/genética , Cromossomos Humanos Y/genética , Filogenia , População Branca/genética , Armênia , Cromossomos Humanos 21-22 e Y/classificação , Cromossomos Humanos Y/classificação , Europa (Continente) , Evolução Molecular , Frequência do Gene , Humanos , Oriente Médio , Polimorfismo de Nucleotídeo Único
17.
Eur J Hum Genet ; 20(10): 1063-70, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22510847

RESUMO

Central Asia has served as a corridor for human migrations providing trading routes since ancient times. It has functioned as a conduit connecting Europe and the Middle East with South Asia and far Eastern civilizations. Therefore, the study of populations in this region is essential for a comprehensive understanding of early human dispersal on the Eurasian continent. Although Y- chromosome distributions in Central Asia have been widely surveyed, present-day Afghanistan remains poorly characterized genetically. The present study addresses this lacuna by analyzing 190 Pathan males from Afghanistan using high-resolution Y-chromosome binary markers. In addition, haplotype diversity for its most common lineages (haplogroups R1a1a*-M198 and L3-M357) was estimated using a set of 15 Y-specific STR loci. The observed haplogroup distribution suggests some degree of genetic isolation of the northern population, likely due to the Hindu Kush mountain range separating it from the southern Afghans who have had greater contact with neighboring Pathans from Pakistan and migrations from the Indian subcontinent. Our study demonstrates genetic similarities between Pathans from Afghanistan and Pakistan, both of which are characterized by the predominance of haplogroup R1a1a*-M198 (>50%) and the sharing of the same modal haplotype. Furthermore, the high frequencies of R1a1a-M198 and the presence of G2c-M377 chromosomes in Pathans might represent phylogenetic signals from Khazars, a common link between Pathans and Ashkenazi groups, whereas the absence of E1b1b1a2-V13 lineage does not support their professed Greek ancestry.


Assuntos
Cromossomos Humanos Y/genética , Afeganistão/etnologia , Etnicidade/genética , Frequência do Gene , Haplótipos , Humanos , Masculino , Repetições de Microssatélites , Filogenia , Polimorfismo de Nucleotídeo Único
18.
Nat Commun ; 3: 698, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22426219

RESUMO

The Tyrolean Iceman, a 5,300-year-old Copper age individual, was discovered in 1991 on the Tisenjoch Pass in the Italian part of the Ötztal Alps. Here we report the complete genome sequence of the Iceman and show 100% concordance between the previously reported mitochondrial genome sequence and the consensus sequence generated from our genomic data. We present indications for recent common ancestry between the Iceman and present-day inhabitants of the Tyrrhenian Sea, that the Iceman probably had brown eyes, belonged to blood group O and was lactose intolerant. His genetic predisposition shows an increased risk for coronary heart disease and may have contributed to the development of previously reported vascular calcifications. Sequences corresponding to ~60% of the genome of Borrelia burgdorferi are indicative of the earliest human case of infection with the pathogen for Lyme borreliosis.


Assuntos
Genoma Humano , Genoma Mitocondrial , Múmias , Sequência de Bases , Borrelia burgdorferi/genética , Mapeamento Cromossômico , DNA Mitocondrial/genética , Predisposição Genética para Doença , História Antiga , Humanos , Doença de Lyme/história , Mitocôndrias/genética , Múmias/microbiologia , Paleontologia , Fenótipo , Análise de Sequência de DNA , Calcificação Vascular
19.
Mol Biol Evol ; 29(1): 359-65, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21917723

RESUMO

The Caucasus, inhabited by modern humans since the Early Upper Paleolithic and known for its linguistic diversity, is considered to be important for understanding human dispersals and genetic diversity in Eurasia. We report a synthesis of autosomal, Y chromosome, and mitochondrial DNA (mtDNA) variation in populations from all major subregions and linguistic phyla of the area. Autosomal genome variation in the Caucasus reveals significant genetic uniformity among its ethnically and linguistically diverse populations and is consistent with predominantly Near/Middle Eastern origin of the Caucasians, with minor external impacts. In contrast to autosomal and mtDNA variation, signals of regional Y chromosome founder effects distinguish the eastern from western North Caucasians. Genetic discontinuity between the North Caucasus and the East European Plain contrasts with continuity through Anatolia and the Balkans, suggesting major routes of ancient gene flows and admixture.


Assuntos
Emigração e Imigração/história , Fluxo Gênico , Algoritmos , Antropologia Física , Povo Asiático/genética , Cromossomos Humanos Y , Análise por Conglomerados , DNA , DNA Mitocondrial/genética , Genética Populacional , História Antiga , Humanos , Linguística , Transcaucásia , População Branca/genética
20.
Eur J Hum Genet ; 20(3): 313-20, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22085901

RESUMO

Armenia, situated between the Black and Caspian Seas, lies at the junction of Turkey, Iran, Georgia, Azerbaijan and former Mesopotamia. This geographic position made it a potential contact zone between Eastern and Western civilizations. In this investigation, we assess Y-chromosomal diversity in four geographically distinct populations that represent the extent of historical Armenia. We find a striking prominence of haplogroups previously implicated with the Agricultural Revolution in the Near East, including the J2a-M410-, R1b1b1(*)-L23-, G2a-P15- and J1-M267-derived lineages. Given that the Last Glacial Maximum event in the Armenian plateau occured a few millennia before the Neolithic era, we envision a scenario in which its repopulation was achieved mainly by the arrival of farmers from the Fertile Crescent temporally coincident with the initial inception of farming in Greece. However, we detect very restricted genetic affinities with Europe that suggest any later cultural diffusions from Armenia to Europe were not associated with substantial amounts of paternal gene flow, despite the presence of closely related Indo-European languages in both Armenia and Southeast Europe.


Assuntos
Cromossomos Humanos Y , Variação Genética , Genética Populacional , Armênia/etnologia , Fluxo Gênico , Frequência do Gene , Haplótipos , Humanos , Repetições de Microssatélites , Filogenia , Filogeografia , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...