Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cells Transl Med ; 11(2): 200-212, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35259263

RESUMO

Epidural fat is commonly discarded during spine surgery to increase the operational field. However, mesenchymal progenitor cells (MPCs) have now been identified in human epidural fat and within the murine dura mater. This led us to believe that epidural fat may regulate homeostasis and regeneration in the vertebral microenvironment. Using two MPC lineage tracing reporter mice (Prx1 and Hic1), not only have we found that epidural fat MPCs become incorporated in the dura mater over the course of normal skeletal maturation, but have also identified these cells as an endogenous source of repair and regeneration post-dural injury. Moreover, our results reveal a partial overlap between Prx1+ and Hic1+ populations, indicating a potential hierarchical relationship between the two MPC populations. This study effectively challenges the notion of epidural fat as an expendable tissue and mandates further research into its biological function and relevance.


Assuntos
Dura-Máter , Células-Tronco Mesenquimais , Animais , Dura-Máter/lesões , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição Kruppel-Like , Camundongos
2.
Cell Stem Cell ; 28(10): 1690-1707, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34624231

RESUMO

Multipotent stromal cells (MSCs) are vital for development, maintenance, function, and regeneration of most tissues. They can differentiate along multiple connective lineages, but unlike most other stem/progenitor cells, they carry out various other functions while maintaining their developmental potential. MSCs function as damage sensors, respond to injury by fostering regeneration through secretion of trophic factors as well as extracellular matrix (ECM) molecules, and contribute to fibrotic reparative processes when regeneration fails. Tissue-specific MSC identity, fate(s), and function(s) are being resolved through fate mapping coupled with single cell "omics," providing unparalleled insights into the secret lives of tissue-resident MSCs.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Diferenciação Celular , Matriz Extracelular , Células-Tronco Multipotentes , Células Estromais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...