Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 114(7): 2435-49, 2010 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-20108956

RESUMO

Several complementary experimental and theoretical methodologies were used to explore water uptake on sodium chloride (NaCl) particles containing varying amounts of sodium dodecyl sulfate (SDS) to elucidate the interaction of water with well-defined, environmentally relevant surfaces. Experiments probed the hygroscopic growth of mixed SDS/NaCl nanoparticles that were generated by electrospraying aqueous 2 g/L solutions containing SDS and NaCl with relative NaCl/SDS weight fractions of 0, 5, 11, 23, or 50 wt/wt %. Particles with mobility-equivalent diameters of 14.0(+/-0.2) nm were size selected and their hygroscopic growth was monitored by a tandem nano-differential mobility analyzer as a function of relative humidity (RH). Nanoparticles generated from 0 and 5 wt/wt % solutions deliquesced abruptly at 79.1(+/-1.0)% RH. Both of these nanoparticle compositions had 3.1(+/-0.5) monolayers of adsorbed surface water prior to deliquescing and showed good agreement with the Brunauer-Emmett-Teller and the Frenkel-Halsey-Hill isotherms. Above the deliquescence point, the growth curves could be qualitatively described by Kohler theory after appropriately accounting for the effect of the particle shape on mobility. The SDS/NaCl nanoparticles with larger SDS fractions displayed gradual deliquescence at a RH that was significantly lower than 79.1%. All compositions of SDS/NaCl nanoparticles had monotonically suppressed mobility growth factors (GF(m)) with increasing fractions of SDS in the electrosprayed solutions. The Zdanovskii-Stokes-Robinson model was used to estimate the actual fractions of SDS and NaCl in the nanoparticles; it suggested the nanoparticles were enhanced in SDS relative to their electrospray solution concentrations. X-ray photoelectron spectroscopy (XPS), FTIR, and AFM were consistent with SDS forming first a monolayer and then a crystalline phase around the NaCl core. Molecular dynamics simulations of water vapor interacting with SDS/NaCl slabs showed that SDS kinetically hinders the initial water uptake. Large binding energies of sodium methyl sulfate (SMS)-(NaCl)(4), H(2)O-(NaCl)(4), and SMS-H(2)O-(NaCl)(4) calculated at the MP2/cc-pVDZ level suggested that placing H(2)O in between NaCl and surfactant headgroup is energetically favorable. These results provide a comprehensive description of SDS/NaCl nanoparticles and their properties.

2.
J Phys Chem A ; 113(26): 7678-86, 2009 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-19298069

RESUMO

Aerosolized nanoparticles of NaCl coated with variable amounts of surfactant AOT were generated by electrospraying AOT/NaCl aqueous solutions, followed by neutralizing and drying the resulting particles. A tandem differential mobility analyzer was used to select a narrow size distribution of particles with mobility equivalent diameters below 20 nm and monitor their hygroscopic growth as a function of relative humidity. Effects of the particle size and relative amount of surfactant on the hygroscopic growth of NaCl were studied. For pure NaCl nanoparticles, the deliquescence relative humidity (DRH) increased as the particle size was decreased, in full agreement with previous measurements. Below the DRH the NaCl nanoparticles had an equivalent of one-four monolayers of water adsorbed on the surface. The addition of a sub-monolayer AOT coating reduced the DRH and suppressed the hygroscopic growth of the NaCl core. At AOT coverage levels exceeding one monolayer, a clear deliquescence transition was no longer discernible. The Zdanovskii-Stokes-Robinson (ZSR) model failed to predict the observed growth factors of mixed AOT/NaCl nanoparticles reflecting a large contribution of the interfacial interactions between NaCl and AOT to the total free energy of the particles. There were indications that AOT/NaCl nanoparticles prepared by the electrospray aerosol source were enhanced in the relative mass fraction of AOT in comparison with the solution from which they were electrosprayed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...