Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Euro Surveill ; 24(3)2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30670140

RESUMO

On 18 January 2016, the French National Reference Centre for Salmonella reported to Santé publique France an excess of Salmonella enterica serotype Dublin (S. Dublin) infections. We investigated to identify the source of infection and implement control measures. Whole genome sequencing (WGS) and multilocus variable-number tandem repeat analysis (MLVA) were performed to identify microbiological clusters and links among cases, animal and food sources. Clusters were defined as isolates with less than 15 single nucleotide polymorphisms determined by WGS and/or with identical MLVA pattern. We compared different clusters of cases with other cases (case-case study) and controls recruited from a web-based cohort (case-control study) in terms of food consumption. We interviewed 63/83 (76%) cases; 2,914 controls completed a questionnaire. Both studies' findings indicated that successive S. Dublin outbreaks from different sources had occurred between November 2015 and March 2016. In the case-control study, cases of distinct WGS clusters were more likely to have consumed Morbier (adjusted odds ratio (aOR): 14; 95% confidence interval (CI): 4.8-42) or Vacherin Mont d'Or (aOR: 27; 95% CI: 6.8-105), two bovine raw-milk cheeses. Based on these results, the Ministry of Agriculture launched a reinforced control plan for processing plants of raw-milk cheeses in the production region, to prevent future outbreaks.


Assuntos
Queijo/microbiologia , Surtos de Doenças/prevenção & controle , Leite/microbiologia , Intoxicação Alimentar por Salmonella/epidemiologia , Salmonella/isolamento & purificação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Estudos de Casos e Controles , Bovinos , Criança , Pré-Escolar , Eletroforese em Gel de Campo Pulsado , Feminino , França/epidemiologia , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Repetições Minissatélites , Polimorfismo de Nucleotídeo Único , Salmonella/classificação , Salmonella/genética , Intoxicação Alimentar por Salmonella/microbiologia , Sequenciamento Completo do Genoma , Adulto Jovem
2.
Environ Int ; 121(Pt 1): 189-198, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30216771

RESUMO

OBJECTIVES: Understanding the dynamics of the temperature-mortality relationship is an asset to support public health interventions. We investigated the lag structure of the mortality response to cold and warm temperatures in 18 French cities between 2000 and 2010. METHODS: A distributed lag non-linear generalized model using a quasi-Poisson distribution and controlling for classical confounding factors was built in each city. A fitted meta-analytical model combined the city-specific models to derive the best linear unbiased prediction of the association, and a meta-regression explored the influence of background characteristics of the cities. The fraction of mortality attributable to cold and heat was estimated with reference to the minimum mortality temperature. RESULTS: Between 2000 and 2010, 3.9% [CI 95% 3.2:4.6] of the total mortality was attributed to cold, and 1.2% [1.1:1.2] to heat. The immediate increase in mortality following high temperatures was partly compensated by a harvesting effect when temperatures were below the 99.2 percentiles of the mean temperature distributions. DISCUSSION: Cold represents a significant public health burden, mostly driven by moderate temperatures (between percentiles 2.5 and 25). The population is better adapted to warm temperatures, up to a certain intensity when heat becomes an acute environmental health emergency (above percentile 99). The rapid increase in mortality risk at very high temperatures percentiles calls for an active adaptation in a context of climate change.


Assuntos
Temperatura Baixa/efeitos adversos , Temperatura Alta/efeitos adversos , Mortalidade , Cidades/epidemiologia , Mudança Climática , França/epidemiologia , Humanos , Distribuição de Poisson , Saúde Pública
3.
Sci Total Environ ; 571: 416-25, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27453142

RESUMO

INTRODUCTION: Worldwide, air pollution has become a main environmental cause of premature mortality. This burden is largely due to fine particles. Recent cohort studies have confirmed the health risks associated with chronic exposure to PM2.5 for European and French populations. We assessed the mortality impact of PM2.5 in continental France using these new results. METHODS: Based on a meta-analysis of French and European cohorts, we computed a shrunken estimate of PM2.5-mortality relationship for the French population (RR 1.15 [1.05:1.25] for a 10µg/m(3) increase in PM2.5). This RR was applied to PM2.5 annual concentrations estimated at a fine spatial scale, using a classical health impacts assessment method. The health benefits associated with alternative scenarios of improving air quality were computed for 36,219 French municipalities for 2007-2008. RESULTS: 9% of the total mortality in continental France is attributable to anthropogenic PM2.5. This represents >48,000 deaths per year, and 950,000years of life lost per year, more than half occurring in urban areas larger than 100,000 inhabitants. If none of the municipalities exceeded the World Health Organization guideline value for PM2.5 (10µg/m(3)), the total mortality could be decreased by 3%, corresponding to 400,000years of life saved per year. CONCLUSION: Results were consistent with previous estimates of the long-term mortality impacts of fine particles in France. These findings show that further actions to improve air quality in France would substantially improve health.


Assuntos
Poluentes Atmosféricos/toxicidade , Exposição Ambiental/efeitos adversos , Mortalidade Prematura , Material Particulado/toxicidade , Estudos de Coortes , França/epidemiologia , Tamanho da Partícula
4.
PLoS Curr ; 4: e4f83ebf72317d, 2012 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23066514

RESUMO

Introduction The French warning system for heat waves is based on meteorological forecasts. Near real-time health indicators are used to support decision-making, e.g. to extend the warning period, or to choose the most appropriate preventive measures. They must be analysed rapidly to provide decision-makers useful and in-time information. The objective of the study was to evaluate such health indicators. Methods A literature review identified a range of possible mortality and morbidity indicators. A reduced number were selected, based on several criteria including sensitivity to heat, reactivity, representativity and data quality. Two methods were proposed to identify indicator-based statistical alarms: historical limits or control charts, depending on data availability. The use of the indicators was examined using the 2006 and 2009 heat waves. Results Out of 25 possible indicators, 5 were selected: total mortality, total emergency calls, total emergency visits, emergency visits for people aged 75 and over and emergency visits for causes linked to heat. In 2006 and 2009, no clear increases were observed during the heat waves. The analyses of real-time health indicators showed there was no need to modify warning proposals based on meteorological parameters. Discussion These findings suggest that forecasted temperatures can be used to anticipate heat waves and promote preventive actions. Health indicators may not be needed to issue a heat wave alert, but daily surveillance of health indicators may be useful for decision-makers to adapt prevention measures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...