Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Optoelectron ; 17(1): 21, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008156

RESUMO

Novel poly(dimethylsiloxane) (PDMS) doped with two different spiropyran derivatives (SP) were investigated as potential candidates for the preparation of elastomeric waveguides with UV-dependent optical properties. First, free-standing films were prepared and evaluated with respect to their photochromic response to UV irradiation. Kinetics, reversibility as well as photofatigue and refractive index of the SP-doped PDMS samples were assessed. Second, SP-doped PDMS waveguides were fabricated and tested as UV sensors by monitoring changes in the transmitted optical power of a visible laser (633 nm). UV sensing was successfully demonstrated by doping PDMS using one spiropyran derivative whose propagation loss was measured as 1.04 dB/cm at 633 nm, and sensitivity estimated at 115% change in transmitted optical power per unit change in UV dose. The decay and recovery time constants were measured at 42 and 107 s, respectively, with an average UV saturation dose of 0.4 J/cm2. The prepared waveguides exhibited a reversible and consistent response even under bending. The sensor parameters can be tailored by varying the waveguide length up to 21 cm, and are affected by white light and temperatures up to 70 ℃. This work is relevant to elastomeric optics, smart optical materials, and polymer optical waveguide sensors.

2.
Biosensors (Basel) ; 14(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38920599

RESUMO

Throughout the central nervous system, the spinal cord plays a very important role, namely, transmitting sensory and motor information inwardly so that it can be processed by the brain. There are many different ways this structure can be damaged, such as through traumatic injury or surgery, such as scoliosis correction, for instance. Consequently, damage may be caused to the nervous system as a result of this. There is no doubt that optical devices such as microscopes and cameras can have a significant impact on research, diagnosis, and treatment planning for patients with spinal cord injuries (SCIs). Additionally, these technologies contribute a great deal to our understanding of these injuries, and they are also essential in enhancing the quality of life of individuals with spinal cord injuries. Through increasingly powerful, accurate, and minimally invasive technologies that have been developed over the last decade or so, several new optical devices have been introduced that are capable of improving the accuracy of SCI diagnosis and treatment and promoting a better quality of life after surgery. We aim in this paper to present a timely overview of the various research fields that have been conducted on optical devices that can be used to diagnose spinal cord injuries as well as to manage the associated health complications that affected individuals may experience.


Assuntos
Dispositivos Ópticos , Traumatismos da Medula Espinal , Traumatismos da Medula Espinal/diagnóstico , Traumatismos da Medula Espinal/terapia , Humanos , Qualidade de Vida , Técnicas Biossensoriais
3.
Sensors (Basel) ; 23(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36992033

RESUMO

We report the design and testing of a sensor pad based on optical and flexible materials for the development of pressure monitoring devices. This project aims to create a flexible and low-cost pressure sensor based on a two-dimensional grid of plastic optical fibers embedded in a pad of flexible and stretchable polydimethylsiloxane (PDMS). The opposite ends of each fiber are connected to an LED and a photodiode, respectively, to excite and measure light intensity changes due to the local bending of the pressure points on the PDMS pad. Tests were performed in order to study the sensitivity and repeatability of the designed flexible pressure sensor.

4.
Sci Rep ; 12(1): 9672, 2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690637

RESUMO

A fast response time (0.1 s) magnetic field sensor has been demonstrated utilizing a photonic crystal fiber with nano-size air holes infiltrated with polyethylene glycol based magnetic fluid. The effect of magnetic nanoparticles concentration in the fluid on the magneto-optical sensor performance and its dependence under varying magnetic-field loads was investigated in detail. In particular, the sensor response was analytically modelled with a Langevin function with a good fit (R[Formula: see text]0.996). A threshold sensing point as low as 20 gauss was recorded and a detection range of 0-350 gauss was demonstrated by means of optical transmission measurements. The experimental results were validated by theory using a waveguide light transmission model fed by finite-element method simulations of the principal guided modes in the infiltrated fiber sensor. The simple interrogation scheme, high sensitivity and quick response time makes the proposed hybrid fiber-optic magneto-fluidic probe a promising platform for novel biochemical sensing applications.

5.
Sensors (Basel) ; 21(5)2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33804327

RESUMO

To better understand the real-time biomechanics of soft tissues under sudden mechanical loads such as traumatic spinal cord injury (SCI), it is important to improve in vitro models. During a traumatic SCI, the spinal cord suffers high-velocity compression. The evaluation of spinal canal occlusion with a sensor is required in order to investigate the degree of spinal compression and the fast biomechanical processes involved. Unfortunately, available techniques suffer with drawbacks such as the inability to measure transverse compression and impractically large response times. In this work, an optical pressure sensing scheme based on a fiber Bragg grating and a narrow-band filter was designed to detect and demonstrate the transverse compression inside a spinal cord surrogate in real-time. The response time of the proposed scheme was 20 microseconds; a five orders of magnitude enhancement over comparable schemes that depend on costly and slower optical spectral analyzers. We further showed that this improvement in speed comes with a negligible loss in sensitivity. This study is another step towards better understanding the complex biomechanics involved during a traumatic SCI, using a method capable of probing the related internal strains with high-spatiotemporal resolution.


Assuntos
Traumatismos da Medula Espinal , Fenômenos Biomecânicos , Humanos , Pressão , Coluna Vertebral
6.
Sci Rep ; 9(1): 2488, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30792502

RESUMO

We demonstrate a new guiding regime termed endlessly mono-radial, in the proposed annular core photonic crystal fiber (AC-PCF), whereby only modes of the fundamental radial order are supported by the fiber at all input wavelengths. This attribute is of high interest for applications that require the stable and broadband guiding of mono-radial (i.e. doughnut shaped) cylindrical vector beams and vortex beams carrying orbital angular momentum. We further show that one can significantly tailor the chromatic dispersion and optical nonlinearities of the waveguide through proper optimization of the photonic crystal microstructured cladding. The analytical investigation of the remarkable modal properties of the AC-PCF is validated by full-vector simulations. As an example, we performed simulations of the nonlinear fiber propagation of short femtosecond pulses at 835 nm center wavelength and kilowatt-level peak power, which indicate that the AC-PCF represents a promising avenue to investigate the supercontinuum generation of optical vortex light. The proposed fiber design has potential applications in space-division multiplexing, optical sensing and super-resolution microscopy.

7.
Med Eng Phys ; 48: 212-216, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28687472

RESUMO

In vitro replication of traumatic spinal cord injury is necessary to understand its biomechanics and to improve animal models. During a traumatic spinal cord injury, the spinal cord withstands an impaction at high velocity. In order to fully assess the impaction, the use of spinal canal occlusion sensor is necessary. A physical spinal cord surrogate is also often used to simulate the presence of the spinal cord and its surrounding structures. In this study, an instrumented physical spinal cord surrogate is presented and validated. The sensing is based on light transmission loss observed in embedded bare optical fibers subjected to bending. The instrumented surrogate exhibits similar mechanical properties under static compression compared to fresh porcine spinal cords. The instrumented surrogate has a compression sensing threshold of 40% that matches the smallest compression values leading to neurological injuries. The signal obtained from the sensor allows calculating the compression of the spinal cord surrogate with a maximum of 5% deviation. Excellent repeatability was also observed under repetitive loading. The proposed instrumented spinal cord surrogate is promising with satisfying mechanical properties and good sensing capability. It is the first attempt at proposing a method to assess the internal loads sustained by the spinal cord during a traumatic injury.


Assuntos
Fibras Ópticas , Medula Espinal , Força Compressiva , Estudos de Viabilidade , Modelos Anatômicos , Impressão Tridimensional
8.
Sci Rep ; 7(1): 1552, 2017 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-28484245

RESUMO

In this work, we demonstrate the measurement of the Brillouin gain spectra of vector modes in a few-mode fiber for the first time using a simple heterodyne detection technique. A tunable long period fiber grating is used to selectively excite the vector modes supported by the few-mode fiber. Further, we demonstrate the non-destructive measurement of the absolute effective refractive indices (n eff ) of vector modes with ~10-4 accuracy based on the acquired Brillouin frequency shifts of the modes. The proposed technique represents a new tool for probing and controlling vector modes as well as modes carrying orbital angular momentum in optical fibers with potential applications in advanced optical communications and multi-parameter fiber-optic sensing.

9.
Opt Express ; 23(23): 29647-59, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26698447

RESUMO

We propose and numerically investigate annular-cladding erbium doped multicore fibers (AC-EDMCF) with either solid or air hole inner cladding to enhance the pump power efficiency in optical amplifiers for spatial division multiplexing (SDM) transmission links. We first propose an all-glass fiber in which a central inner cladding region with a depressed refractive index is introduced to confine the pump inside a ring-shaped region overlapping the multiple signal cores. Through numerical simulations, we determine signal core and annular pump cladding parameters respecting fabrication constraints. We also propose and examine a multi-spot injection scheme for launching the pump in the annular cladding. With this all-glass fiber with annular cladding, our results predict 10 dB increase in gain and 21% pump power savings compared to the standard double cladding design. We also investigate a fiber with an air hole inner cladding to further enhance the pump power confinement and minimize power leaking into the inner cladding. The results are compared to the all-glass AC-EDMCF.

10.
Opt Express ; 23(8): 10553-63, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25969095

RESUMO

We propose a family of ring-core fibers, designed for the transmission of OAM modes, that can be fabricated by drawing five different fibers from a single preform. This novel technique allows us to experimentally sweep design parameters and speed up the fiber design optimization process. Such a family of fibers could be used to examine system performance, but also facilitate understanding of parameter impact in the transition from design to fabrication. We present design parameters characterizing our fiber, and enumerate criteria to be satisfied. We determine targeted fiber dimensions and explain our strategy for examining a design family rather than a single fiber design. We simulate modal properties of the designed fibers, and compare the results with measurements performed on fabricated fibers.

11.
Sensors (Basel) ; 14(10): 19260-74, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25325335

RESUMO

The ability to integrate multiple materials into miniaturized fiber structures enables the realization of novel biomedical textile devices with higher-level functionalities and minimally-invasive attributes. In this work, we present novel textile fabrics integrating unobtrusive multi-material fibers that communicate through 2.4 GHz wireless networks with excellent signal quality. The conductor elements of the textiles are embedded within the fibers themselves, providing electrical and chemical shielding against the environment, while preserving the mechanical and cosmetic properties of the garments. These multi-material fibers combine insulating and conducting materials into a well-defined geometry, and represent a cost-effective and minimally-invasive approach to sensor fabrics and bio-sensing textiles connected in real time to mobile communications infrastructures, suitable for a variety of health and life science applications.


Assuntos
Monitorização Ambulatorial , Telemedicina , Tecnologia sem Fio , Humanos , Têxteis
12.
Artigo em Inglês | MEDLINE | ID: mdl-25571432

RESUMO

The ability to integrate multiple materials into miniaturized fiber structures enables the realization of novel biomedical textile devices with higher-level functionalities and minimally-invasive attributes. In this work, we present novel textile fabrics integrating unobtrusive multi-material fibers that communicate through 2.4 GHz wireless networks with excellent signal quality. The conductor elements of the textiles are embedded within the fibers themselves, providing electrical and chemical shielding against the environment, while preserving the mechanical and cosmetic properties of the garments. These multi-material fibers combine insulating and conducting materials into a well-defined geometry, and represent a cost-effective and minimally-invasive approach to sensor fabrics and bio-sensing textiles connected in real time to mobile communications infrastructures, suitable for a variety of health and life science applications.


Assuntos
Vestuário , Têxteis , Técnicas Biossensoriais , Humanos , Monitorização Fisiológica , Propriedades de Superfície , Tecnologia sem Fio
13.
Opt Lett ; 36(13): 2468-70, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21725447

RESUMO

A type of a plasmonic waveguide has been proposed featuring an "open" design that is easy to manufacture, simple to excite and offers convenient access to a plasmonic mode. Optical properties of photonic bandgap (PBG) plasmonic waveguides are investigated experimentally by leakage radiation microscopy and numerically using the finite element method confirming photonic bandgap guidance in a broad spectral range. Propagation and localization characteristics of a PBG plasmonic waveguide have been discussed as a function of the wavelength of operation, waveguide core size, and the number of ridges in the periodic reflector for fundamental and higher order plasmonic modes of the waveguide.

14.
Opt Lett ; 36(13): 2527-9, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21725468

RESUMO

A nanostructured chalcogenide-metal optical fiber is proposed. This hybrid nanofiber is embedded with a periodic array of triangular-shaped deep-subwavelength metallic nanowires set up in a bowtie configuration. Our simulations show that the proposed nanostructured fiber supports a guided plasmonic mode enabling both subwavelength field confinement and extreme nonlinear light-matter interactions, much larger than a bare chalcogenide nanowire of comparable diameter. This is all achieved with less than 3% by volume of metal content.

15.
Opt Express ; 19(10): 9127-38, 2011 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-21643167

RESUMO

In this work we report two designs of subwavelength fibers packaged for practical terahertz wave guiding. We describe fabrication, modeling and characterization of microstructured polymer fibers featuring a subwavelength-size core suspended in the middle of a large porous outer cladding. This design allows convenient handling of the subwavelength fibers without distorting their modal profile. Additionally, the air-tight porous cladding serves as a natural enclosure for the fiber core, thus avoiding the need for a bulky external enclosure for humidity-purged atmosphere. Fibers of 5 mm and 3 mm in outer diameters with a 150 µm suspended solid core and a 900 µm suspended porous core respectively, were obtained by utilizing a combination of drilling and stacking techniques. Characterization of the fiber optical properties and the subwavelength imaging of the guided modes were performed using a terahertz near-field microscopy setup. Near-field imaging of the modal profiles at the fiber output confirmed the effectively single-mode behavior of such waveguides. The suspended core fibers exhibit transmission from 0.10 THz to 0.27 THz (larger core), and from 0.25 THz to 0.51 THz (smaller core). Due to the large fraction of power that is guided in the holey cladding, fiber propagation losses as low as 0.02 cm(-1) are demonstrated specifically for the small core fiber. Low-loss guidance combined with the core isolated from environmental perturbations make these all-dielectric fibers suitable for practical terahertz imaging and sensing applications.

16.
Opt Express ; 19(26): B848-61, 2011 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-22274113

RESUMO

We outline the most recent technological advancements in the design, fabrication and characterization of polymer microstructured optical fibers (MOFs) for applications in the terahertz waveband. Focusing on specific experimental demonstrations, we show that polymer optical fibers provide a very flexible route towards THz wave guiding. Crucial incentives include the large variety of the low-cost and relatively low absorption loss polymers, the facile fiber preform fabrication by molding, drilling, stacking and extrusion, and finally, the simple fabrication through fiber drawing at low forming temperatures.

17.
Appl Opt ; 49(25): 4791-800, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20820222

RESUMO

By using a photonic bandgap (PBG) fiber bundle and a monochrome CCD camera, we experimentally demonstrate an all-fiber spectrometer. A total of 100 Bragg fibers that have complementary and overlapping bandgaps are chosen to compose the fiber bundle. A monochrome CCD is then used to capture the binned image. To reconstruct the test spectrum from a single CCD image, we develop an algorithm based on pseudoinversion of the spectrometer transmission matrix. We demonstrate that the peak center wavelength can always be reconstructed within several percent of its true value regardless of the peak width or position, and that, although the widths of the individual Bragg fiber bandgaps are quite large (60-180nm), the spectroscopic system has a resolution limit of approximately 30nm. Moreover, we conclude that, by minimizing system errors, the resolution can be further improved down to several nanometers in width. Finally, we report fabrication of PBG fiber bundles containing hundreds of fibers using a two-stage drawing technique. This method constitutes a very promising approach toward industrial-strength fabrication of all-fiber spectrometers.

18.
Opt Express ; 18(8): 8647-59, 2010 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-20588708

RESUMO

A new type of microstructured fiber for mid-infrared light is introduced. The chalcogenide glass-based microporous fiber allows extensive dispersion engineering that enables design of flattened waveguide dispersion windows and multiple zero-dispersion points - either blue-shifted or red-shifted from the bulk material zero-dispersion point - including the spectral region of CO(2) laser lines approximately 10.6 microm. Supercontinuum simulations for a specific chalcogenide microporous fiber are performed that demonstrate the potential of the proposed microstructured fiber design to generate a broad continuum in the middle-infrared region using pulsed CO(2) laser as a pump. In addition, an analytical description of the Raman response function of chalcogenide As(2)Se(3) is provided, and a Raman time constant of 5.4 fs at the 1.54 microm pump is computed. What distinguishes the microporous fiber from the microwire, nanowire and other small solid-core designs is the prospect of extensive chromatic dispersion engineering combined with the low loss guidance created by the porosity, thus offering long interaction lengths in nonlinear media.

19.
Opt Express ; 16(12): 9073-86, 2008 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-18545619

RESUMO

The asymptotic closed-form solution to the fundamental diffraction problem of a linear horizontal Hertzian dipole radiating over the metallo-dielectric interface is provided. For observation points just above the interface, we confirm that the total surface near-field is the sum of two components: a long-range surface plasmon polariton and a short-range radiative cylindrical wave. The relative phases, amplitudes and damping functions of each component are quantitatively elucidated through simple analytic expressions for the entire range of propagation: near and asymptotic. Validation of the analytic solution is performed by comparing the predictions of a dipolar model with recently published data.


Assuntos
Metais/química , Modelos Teóricos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Ressonância de Plasmônio de Superfície/instrumentação , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Espalhamento de Radiação
20.
Opt Express ; 15(3): 1182-90, 2007 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-19532347

RESUMO

We investigate the interference of the surface plasmon polariton (SPP) with an incident beam on a metallic slit using the FDTD. We find that the bulk waves radiated at the slit edge by scattering of the SPP leak into the slit and induce accumulated charges within the skin depth, which excite new SPPs on the slit side-walls. The SPP on the top surface of aperture is coupled into the slit and induces the 2D asymmetric field distributions, including the horizontal and vertical Fabry-Perot multi-reflection resonator modes. We show that the addition of these modes with the slit waveguide modes induced by a normally incident beam is the interference between the SPP and the incident beam, which enhances or suppresses the slit transmission, depending on their relative phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...