Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38978667

RESUMO

Background: NAA10-related (Ogden Syndrome) and NAA15-related neurodevelopmental syndromes present with varying degrees of intellectual disability, hypotonia, congenital cardiac abnormalities, seizures, and delayed speech and motor development. While there is much data on the clinical manifestations of these conditions, there are few radiologic reports describing the neuroanatomical abnormalities present on imaging. Objective: Our goal was to provide neuroimaging analyses for a subset of probands with NAA10- and NAA15-related neurodevelopmental symptoms and assess severity, common radiologic anomalies, and changes over time to better understand the pathophysiology of these disease processes. Materials and Methods: Neuroimaging studies from 26 probands (18 with pathogenic variants in NAA10, 8 with pathogenic variants in NAA15) were collected and analyzed. Size of the cerebrum, brainstem, and cerebellum, as well as myelination, brain malformations, globus pallidus hyperintensity, brain lesions, 4th ventricle size, tegmentovermian angle, cisterna magna size, pituitary size, olfactory tract, palate arch, and choroid plexus abnormalities were analyzed. In depth medical histories were also collected on all probands, including genetic testing results and social, cognitive, and developmental history. The Vineland 3 Adaptive Behavior Scale was also administered to the parents to assess functional status of the probands. Results: On average, individuals with Ogden Syndrome had 5.7 anatomical abnormalities (standard deviation (SD) = 3.0), whereas those with NAA15 related neurodevelopmental syndrome had 2.8 (SD = 2.3) (p = .02). Probands who had more anatomical abnormalities tended to score worse on Vineland assessments, suggesting a possible correlation between the two. Structural-functional anatomic differences seen were preserved such that individuals with greater defects on, for example, motor regions of their scans tested worse on motor portions of the Vineland. Probands followed longitudinally demonstrated several changes between scans, most commonly in the cerebellum, brainstem, and degree of myelination. Such changes were only observed for probands with NAA10 variants in our cohort. Conclusion: Despite clinical imaging being reported as being predominantly "normal" during routine clinical care, this analysis of a cohort of patients with NAA10-related (Ogden Syndrome) and NAA15-related neurodevelopmental syndrome by one neuroradiologist has established a range of subtle abnormalities. We hope these findings guide future research and diagnostic studies for this patient population.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37821226

RESUMO

Inositol 1,4,5-triphosphate receptor type 1 (ITPR1) is an endoplasmic reticulum-bound intracellular inositol triphosphate receptor involved in the regulation of intracellular calcium. Pathogenic variants in ITPR1 are associated with spinocerebellar ataxia (SCA) types 15/16 and 29 and have recently been implicated in a facial microsomia syndrome. In this report, we present a family with three affected individuals found to have a heterozygous missense c.800C > T (predicted p.Thr267Met) who present clinically with a SCA29-like syndrome. All three individuals presented with varying degrees of ataxia, developmental delay, and apparent intellectual disability, as well as craniofacial involvement-an uncommon finding in patients with SCA29. The variant was identified using clinical exome sequencing and validated with Sanger sequencing. It is presumed to be inherited via parental germline mosaicism. We present our findings to provide additional evidence for germline mosaic inheritance of SCA29, as well as to expand the clinical phenotype of the syndrome.


Assuntos
Mosaicismo , Ataxias Espinocerebelares , Degenerações Espinocerebelares , Humanos , Ataxias Espinocerebelares/genética , Células Germinativas , Receptores de Inositol 1,4,5-Trifosfato/genética
3.
Front Neurogenom ; 4: 1170473, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38234478

RESUMO

Introduction: Cognition impairments often occur after a traumatic brain injury and occur at higher rates in military members. Cognitive symptoms impair daily function, including balance and life quality, years after the TBI. Current treatments to regain cognitive function after TBI, including medications and cognitive rehabilitation, have shown limited effectiveness. Transcranial direct current stimulation (tDCS) is a low-cost, non-invasive brain stimulation intervention that improves cognitive function in healthy adults and people with neuropsychologic diagnoses beyond current interventions. Despite the available evidence of the effectiveness of tDCS in improving cognition generally, only two small TBI trials have been conducted based on the most recent systematic review of tDCS effectiveness for cognition following neurological impairment. We found no tDCS studies that addressed TBI-related balance impairments. Methods: A scoping review using a peer-reviewed search of eight databases was completed in July 2022. Two assessors completed a multi-step review and completed data extraction on included studies using a priori items recommended in tDCS and TBI research guidelines. Results: A total of 399 results were reviewed for inclusion and 12 met the criteria and had data extracted from them by two assessors using Google Forms. Consensus on combined data results included a third assessor when needed. No studies using tDCS for cognition-related balance were found. Discussion: Guidelines and technology measures increase the identification of brain differences that alter tDCS effects on cognition. People with mild-severe and acute-chronic TBI tolerated and benefited from tDCS. TBI-related cognition is understudied, and systematic research that incorporates recommended data elements is needed to advance tDCS interventions to improve cognition after TBI weeks to years after injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...