Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Plants ; 9(12): 1958-1961, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38052952

RESUMO

Which option for regulating plants derived from new genomic techniques in European Union law is feasible and justifiable scientifically? The European Commission has proposed a new regulation on plants obtained by specific new genomic techniques, which is now subject to discussion in the legislative process. From the perspective of the European Commission's envisaged legal reforms of European Union law towards the integration of greater sustainability, we conclude that the option focusing on plant traits delivering sustainability benefits should be chosen, which is most fitting to facilitate a contribution to climate action, the transition towards climate neutrality, and promptly integrate sustainability into all food-related policies. To assist the decision-making in the legislative process, we outline six regulatory options resulting from regulatory research involving interdisciplinary teams.


Assuntos
Genômica , União Europeia
2.
Front Plant Sci ; 14: 1111110, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123849

RESUMO

Root chicory (Cichorium intybus L. var. sativum) is used to extract inulin, a fructose polymer used as a natural sweetener and prebiotic. However, bitter tasting sesquiterpene lactones, giving chicory its known flavour, need to be removed during inulin extraction. To avoid this extraction and associated costs, recently chicory variants with a lower sesquiterpene lactone content were created by inactivating the four copies of the germacrene A synthase gene (CiGAS-S1, -S2, -S3, -L) which encode the enzyme initiating bitter sesquiterpene lactone biosynthesis in chicory. In this study, different delivery methods for CRISPR/Cas9 reagents have been compared regarding their efficiency to induce mutations in the CiGAS genes, the frequency of off-target mutations as well as their environmental and economic impacts. CRISPR/Cas9 reagents were delivered by Agrobacterium-mediated stable transformation or transient delivery by plasmid or preassembled ribonucleic complexes (RNPs) using the same sgRNA. All methods used lead to a high number of INDEL mutations within the CiGAS-S1 and CiGAS-S2 genes, which match the used sgRNA perfectly; additionally, the CiGAS-S3 and CiGAS-L genes, which have a single mismatch with the sgRNA, were mutated but with a lower mutation efficiency. While using both RNPs and plasmids delivery resulted in biallelic, heterozygous or homozygous mutations, plasmid delivery resulted in 30% of unwanted integration of plasmid fragments in the genome. Plants transformed via Agrobacteria often showed chimerism and a mixture of CiGAS genotypes. This genetic mosaic becomes more diverse when plants were grown over a prolonged period. While the genotype of the on-targets varied between the transient and stable delivery methods, no off-target activity in six identified potential off-targets with two to four mismatches was found. The environmental impacts (greenhouse gas (GHG) emissions and primary energy demand) of the methods are highly dependent on their individual electricity demand. From an economic view - like for most research and development activities - employment and value-added multiplier effects are high; particularly when compared to industrial or manufacturing processes. Considering all aspects, we conclude that using RNPs is the most suitable method for genome editing in chicory since it led to a high efficiency of editing, no off-target mutations, non-transgenic plants with no risk of unwanted integration of plasmid DNA and without needed segregation of transgenes.

3.
Theor Appl Genet ; 132(3): 593-605, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30569366

RESUMO

The ability to generate (doubled) haploid plants significantly accelerates the crop breeding process. Haploids have been induced mainly through the generation of plants from cultivated gametophic (haploid) cells and tissues, i.e., in vitro haploid technologies, or through the selective loss of a parental chromosome set upon inter- or intraspecific hybridization. Here, we focus our review on the mechanisms responsible for the in vivo formation of haploids in the context of inter- and intraspecific hybridization. The application of a modified CENH3 for uniparental genome elimination, the IG1 system used for paternal as well as the BBM-like and the patatin-like phospholipase essential for maternal haploidy induction are discussed in detail.


Assuntos
Haploidia , Melhoramento Vegetal/métodos , Centrômero/metabolismo , Produtos Agrícolas/genética , Hibridização Genética , Partenogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...