Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Cell Biol ; 103(2): 151393, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38306772

RESUMO

The ability of a pathogen to survive and cause an infection is often determined by specific interactions between the host and pathogen proteins. Such interactions can be both intra- and extracellular and may define the outcome of an infection. There are a range of innovative biochemical, biophysical and bioinformatic techniques currently available to identify protein-protein interactions (PPI) between the host and the pathogen. However, the complexity and the diversity of host-pathogen PPIs has led to the development of several high throughput (HT) techniques that enable the study of multiple interactions at once and/or screen multiple samples at the same time, in an unbiased manner. We review here the major HT laboratory-based technologies employed for host-bacterial interaction studies.


Assuntos
Interações Hospedeiro-Patógeno , Humanos , Ensaios de Triagem em Larga Escala/métodos , Animais , Proteínas de Bactérias/metabolismo , Mapeamento de Interação de Proteínas/métodos
2.
mSystems ; 8(5): e0055523, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37615437

RESUMO

IMPORTANCE: The initial interactions between the colonic epithelium and the bacterium are likely critical in the establishment of Clostridioides difficile infection, one of the major causes of hospital-acquired diarrhea worldwide. Molecular interactions between C. difficile and human gut cells have not been well defined mainly due to the technical challenges of studying cellular host-pathogen interactions with this anaerobe. Here we have examined transcriptional changes occurring in the pathogen and host cells during the initial 24 hours of infection. Our data indicate several changes in metabolic pathways and virulence-associated factors during the initial bacterium-host cell contact and early stages of infection. We describe canonical pathways enriched based on the expression profiles of a dual RNA sequencing in the host and bacterium, and functions of bacterial factors that are modulated during infection. This study thus provides fresh insight into the early C. difficile infection process.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Humanos , Clostridioides difficile/genética , RNA-Seq , Infecções por Clostridium/genética , Fatores de Virulência/genética , Diarreia
3.
J Bacteriol ; 205(5): e0046622, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37098979

RESUMO

The anaerobic pathogen Clostridioides difficile, which is a primary cause of antibiotic-associated diarrhea, faces a variety of stresses in the environment and in the mammalian gut. To cope with these stresses, alternative sigma factor B (σB) is employed to modulate gene transcription, and σB is regulated by an anti-sigma factor, RsbW. To understand the role of RsbW in C. difficile physiology, a rsbW mutant (ΔrsbW), in which σB is assumed to be "always on," was generated. ΔrsbW did not show fitness defects in the absence of stress but tolerated acidic environments and detoxified reactive oxygen and nitrogen species better compared to the parental strain. ΔrsbW was defective in spore and biofilm formation, but it displayed increased adhesion to human gut epithelia and was less virulent in a Galleria mellonella infection model. A transcriptomic analysis to understand the unique phenotype of ΔrsbW showed changes in expression of genes associated with stress responses, virulence, sporulation, phage, and several σB-controlled regulators, including the pleiotropic regulator sinRR'. While these profiles were distinct to ΔrsbW, changes in some σB-controlled stress-associated genes were similar to those reported in the absence of σB. Further analysis of ΔrsbW showed unexpected lower intracellular levels of σB, suggesting an additional post-translational control mechanism for σB in the absence of stress. Our study provides insight into the regulatory role of RsbW and the complexity of regulatory networks mediating stress responses in C. difficile. IMPORTANCE Pathogens like Clostridioides difficile face a range of stresses in the environment and within the host. Alternative transcriptional factors like sigma factor B (σB) enable the bacterium to respond quickly to different stresses. Anti-sigma factors like RsbW control sigma factors and therefore the activation of genes via these pathways. Some of these transcriptional control systems provide C. difficile with the ability to tolerate and detoxify harmful compounds. Here, we investigate the role of RsbW in C. difficile physiology. We demonstrate distinctive phenotypes for a rsbW mutant in growth, persistence, and virulence and suggest alternate σB control mechanisms in C. difficile. Understanding C. difficile responses to external stress is key to designing better strategies to combat this highly resilient bacterial pathogen.


Assuntos
Clostridioides difficile , Fator sigma , Animais , Humanos , Fator sigma/genética , Fator sigma/metabolismo , Clostridioides difficile/metabolismo , Clostridioides/metabolismo , Fator B do Complemento/genética , Fator B do Complemento/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Mamíferos/metabolismo
4.
Microbiology (Reading) ; 169(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36848200

RESUMO

C. difficile is the primary cause for nosocomial infective diarrhoea. For a successful infection, C. difficile must navigate between resident gut bacteria and the harsh host environment. The perturbation of the intestinal microbiota by broad-spectrum antibiotics alters the composition and the geography of the gut microbiota, deterring colonization resistance, and enabling C. difficile to colonize. This review will discuss how C. difficile interacts with and exploits the microbiota and the host epithelium to infect and persist. We provide an overview of C. difficile virulence factors and their interactions with the gut to aid adhesion, cause epithelial damage and mediate persistence. Finally, we document the host responses to C. difficile, describing the immune cells and host pathways that are associated and triggered during C. difficile infection.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Microbioma Gastrointestinal , Humanos , Interações Hospedeiro-Patógeno , Antibacterianos/farmacologia
5.
Biomacromolecules ; 22(9): 3756-3768, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34339606

RESUMO

Tuberculosis (TB) is a global epidemic that kills over a million people every year, particularly in low-resource communities. Mycobacterium tuberculosis, the most common bacterium that causes TB, is difficult to treat, particularly in its latent phase, in part due to its ability to survive and replicate within the host macrophage. New therapeutic approaches resulting in better tolerated and shorter antibiotic courses that target intracellular bacteria are critical to effective treatment. The development of a novel, pH-responsive, mannosylated nanoparticle, covalently linked with isoniazid, a first-line TB antibiotic, is presented. This nanoparticle drug delivery agent has increased macrophage uptake and, upon exposure to the acidic phagolysosome, releases isoniazid through hydrolysis of a hydrazone bond, and disintegrates into a linear polymer. Full antibiotic activity is shown to be retained, with mannosylated isoniazid particles being the only treatment exhibiting complete bacterial eradication of intracellular bacteria, compared to an equivalent PEGylated system and free isoniazid. Such a system, able to effectively kill intracellular mycobacteria, holds promise for improved outcomes in TB infection.


Assuntos
Isoniazida , Tuberculose , Antituberculosos/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Macrófagos , Tuberculose/tratamento farmacológico
6.
mSphere ; 6(2)2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33762315

RESUMO

Interactions of commensal bacteria within the gut microbiota and with invading pathogens are critical in determining the outcome of an infection. While murine studies have been valuable, we lack in vitro models to monitor community responses to pathogens at a single-species level. We have developed a multispecies community of nine representative gut species cultured together as a mixed biofilm and tracked numbers of individual species over time using a quantitative PCR (qPCR)-based approach. Introduction of the major nosocomial gut pathogen, Clostridioides difficile, to this community resulted in increased adhesion of commensals and inhibition of C. difficile multiplication. Interestingly, we observed an increase in individual Bacteroides species accompanying the inhibition of C. difficile Furthermore, Bacteroides dorei reduced C. difficile growth within biofilms, suggesting a role for Bacteroides spp. in prevention of C. difficile colonization. We report here an in vitro tool with excellent applications for investigating bacterial interactions within a complex community.IMPORTANCE Studying interactions between bacterial species that reside in the human gut is crucial for gaining a better insight into how they provide protection from pathogen colonization. In vitro models of multispecies bacterial communities wherein behaviors of single species can be accurately tracked are key to such studies. Here, we have developed a synthetic, trackable, gut microbiota community which reduces growth of the human gut pathogen Clostridioides difficile We report that Bacteroides spp. within this community respond by multiplying in the presence of this pathogen, resulting in reduction of C. difficile growth. Defined in vitro communities that can be tailored to include different species are well suited to functional genomic approaches and are valuable tools for understanding interbacterial interactions.


Assuntos
Bactérias/genética , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Interações Microbianas , Simbiose/genética , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bactérias/patogenicidade , Bacteroides/genética , Bacteroides/fisiologia , Biofilmes , Clostridioides difficile/genética , Clostridioides difficile/patogenicidade , Fezes/microbiologia , Humanos , Simbiose/fisiologia
8.
Sci Rep ; 10(1): 17513, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060666

RESUMO

The rise in antimicrobial resistance has prompted the development of alternatives to combat bacterial infections. Bald's eyesalve, a remedy used in the Early Medieval period, has previously been shown to have efficacy against Staphylococcus aureus in in vitro and in vivo models of chronic wounds. However, the safety profile of Bald's eyesalve has not yet been demonstrated, and this is vital before testing in humans. Here, we determined the safety potential of Bald's eyesalve using in vitro, ex vivo, and in vivo models representative of skin or eye infections. We also confirmed that Bald's eyesalve is active against an important eye pathogen, Neisseria gonorrhoeae. Low levels of cytotoxicity were observed in eyesalve-treated cell lines representative of skin and immune cells. Results from a bovine corneal opacity and permeability test demonstrated slight irritation to the cornea that resolved within 10 min. The slug mucosal irritation assay revealed that a low level of mucus was secreted by slugs indicating moderate mucosal irritation. We obtained promising results from mouse wound closure experiments; no visible signs of irritation or inflammation were observed. Our results suggest that Bald's eyesalve could be tested further on human volunteers to assess safety for topical application against bacterial infections.


Assuntos
Produtos Biológicos/farmacologia , Córnea/efeitos dos fármacos , Neisseria gonorrhoeae/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Bile , Produtos Biológicos/efeitos adversos , Bovinos , Sobrevivência Celular , Avaliação Pré-Clínica de Medicamentos , Feminino , Alho , Gonorreia/tratamento farmacológico , Humanos , Irritantes , Queratinócitos/efeitos dos fármacos , Camundongos , Cebolas , Segurança do Paciente , Permeabilidade , Infecções Estafilocócicas/tratamento farmacológico , Células THP-1 , Vinho , Cicatrização
9.
Sci Rep ; 10(1): 14838, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908165

RESUMO

The Staphylococcus aureus type VII secretion system (T7SS) exports several proteins that are pivotal for bacterial virulence. The mechanisms underlying T7SS-mediated staphylococcal survival during infection nevertheless remain unclear. Here we report that S. aureus lacking T7SS components are more susceptible to host-derived antimicrobial fatty acids. Unsaturated fatty acids such as linoleic acid (LA) elicited an increased inhibition of S. aureus mutants lacking T7SS effectors EsxC, EsxA and EsxB, or the membrane-bound ATPase EssC, compared to the wild-type (WT). T7SS mutants generated in different S. aureus strain backgrounds also displayed an increased sensitivity to LA. Analysis of bacterial membrane lipid profiles revealed that the esxC mutant was less able to incorporate LA into its membrane phospholipids. Although the ability to bind labelled LA did not differ between the WT and mutant strains, LA induced more cell membrane damage in the T7SS mutants compared to the WT. Furthermore, proteomic analyses of WT and mutant cell fractions revealed that, in addition to compromising membranes, T7SS defects induce oxidative stress and hamper their response to LA challenge. Thus, our findings indicate that T7SS contribute to maintaining S. aureus membrane integrity and homeostasis when bacteria encounter antimicrobial fatty acids.


Assuntos
Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Ácidos Graxos/metabolismo , Staphylococcus aureus/metabolismo , Sistemas de Secreção Tipo VII/metabolismo , Regulação Bacteriana da Expressão Gênica
10.
Adv Appl Microbiol ; 112: 105-141, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32762866

RESUMO

Staphylococcus aureus is one of the leading causes of hospital and community-acquired infections worldwide. The increasing occurrence of antibiotic resistant strains and the high rates of recurrent staphylococcal infections have placed several treatment challenges on healthcare systems. In recent years, it has become evident that S. aureus is a facultative intracellular pathogen, able to invade and survive in a range of cell types. The ability to survive intracellularly provides this pathogen with yet another way to evade antibiotics and immune responses during infection. Intracellular S. aureus have been strongly linked to several recurrent infections, including severe bone infections and septicemias. S. aureus is armed with an array of virulence factors as well as an intricate network of regulators that enable it to survive, replicate and escape from a number of immune and nonimmune host cells. It is able to successfully manipulate host cell pathways and use it as a niche to multiply, disseminate, as well as persist during an infection. This bacterium is also known to adapt to the intracellular environment by forming small colony variants, which are metabolically inactive. In this review we will discuss the clinical evidence, the molecular pathways involved in S. aureus intracellular persistence, and new treatment strategies for targeting intracellular S. aureus.


Assuntos
Citoplasma/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/fisiologia , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Apoptose , Autofagia , Citoplasma/patologia , Variação Genética , Humanos , Viabilidade Microbiana , Reinfecção/tratamento farmacológico , Reinfecção/microbiologia , Reinfecção/patologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/patologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
11.
Cell Microbiol ; 22(11): e13248, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32749737

RESUMO

In 2019 we started a new annual meeting, aimed at bringing together researchers from across the United Kingdom studying cellular microbiology and the cell biology of host-pathogen interactions. In contrast to large glamourous meetings, featuring the great and the good from across the world, we wanted to create a forum for early career researchers to present their work and enjoy lively discussion. In particular, we hope that focussing on making the meeting accessible, affordable, and informal would help integrate and build the U.K. community working on this exciting topic.


Assuntos
Bactérias/patogenicidade , Candida/patogenicidade , Interações Hospedeiro-Patógeno , Microbiologia , Animais , Infecções Bacterianas/microbiologia , Candida/fisiologia , Candidíase/microbiologia
12.
Sci Rep ; 9(1): 9903, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289293

RESUMO

The anaerobic gut pathogen, Clostridioides difficile, forms adherent biofilms that may play an important role in recurrent C. difficile infections. The mechanisms underlying C. difficile community formation and inter-bacterial interactions are nevertheless poorly understood. C. difficile produces AI-2, a quorum sensing molecule that modulates biofilm formation across many bacterial species. We found that a strain defective in LuxS, the enzyme that mediates AI-2 production, is defective in biofilm development in vitro. Transcriptomic analyses of biofilms formed by wild type (WT) and luxS mutant (luxS) strains revealed a downregulation of prophage loci in the luxS mutant biofilms compared to the WT. Detection of phages and eDNA within biofilms may suggest that DNA release by phage-mediated cell lysis contributes to C. difficile biofilm formation. In order to understand if LuxS mediates C. difficile crosstalk with other gut species, C. difficile interactions with a common gut bacterium, Bacteroides fragilis, were studied. We demonstrate that C. difficile growth is significantly reduced when co-cultured with B. fragilis in mixed biofilms. Interestingly, the absence of C. difficile LuxS alleviates the B. fragilis-mediated growth inhibition. Dual species RNA-sequencing analyses from single and mixed biofilms revealed differential modulation of distinct metabolic pathways for C. difficile WT, luxS and B. fragilis upon co-culture, indicating that AI-2 may be involved in induction of selective metabolic responses in B. fragilis. Overall, our data suggest that C. difficile LuxS/AI-2 utilises different mechanisms to mediate formation of single and mixed species communities.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteroides fragilis/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Liases de Carbono-Enxofre/metabolismo , Clostridioides difficile/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Homosserina/análogos & derivados , Lactonas/farmacologia , Percepção de Quorum , Proteínas de Bactérias/genética , Bacteroides fragilis/efeitos dos fármacos , Bacteroides fragilis/metabolismo , Biofilmes/efeitos dos fármacos , Liases de Carbono-Enxofre/genética , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/metabolismo , Homosserina/farmacologia , Mutação , Transdução de Sinais
14.
Biomaterials ; 217: 119249, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31279102

RESUMO

Intracellular persistence of bacteria represents a clinical challenge as bacteria can thrive in an environment protected from antibiotics and immune responses. Novel targeting strategies are critical in tackling antibiotic resistant infections. Synthetic antimicrobial peptides (SAMPs) are interesting candidates as they exhibit a very high antimicrobial activity. We first compared the activity of a library of ammonium and guanidinium polymers with different sequences (statistical, tetrablock and diblock) synthesized by RAFT polymerization against methicillin-resistant S. aureus (MRSA) and methicillin-sensitive strains (MSSA). As the guanidinium SAMPs were the most potent, they were used to treat intracellular S. aureus in keratinocytes. The diblock structure was the most active, reducing the amount of intracellular MSSA and MRSA by two-fold. We present here a potential treatment for intracellular, multi-drug resistant bacteria, using a simple and scalable strategy.


Assuntos
Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Guanidina/química , Guanidina/farmacologia , Espaço Intracelular/microbiologia , Polímeros/química , Polímeros/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Células A549 , Compostos de Amônio/farmacologia , Animais , Antibacterianos/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Endocitose/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Fluorescência , Guanidina/síntese química , Humanos , Testes de Sensibilidade Microbiana , Polímeros/síntese química , Ovinos , Relação Estrutura-Atividade , Testes de Toxicidade
15.
Front Microbiol ; 10: 879, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31114553

RESUMO

Interactions of anaerobic gut bacteria, such as Clostridium difficile, with the intestinal mucosa have been poorly studied due to challenges in culturing anaerobes with the oxygen-requiring gut epithelium. Although gut colonization by C. difficile is a key determinant of disease outcome, precise mechanisms of mucosal attachment and spread remain unclear. Here, using human gut epithelial monolayers co-cultured within dual environment chambers, we demonstrate that C. difficile adhesion to gut epithelial cells is accompanied by a gradual increase in bacterial numbers. Prolonged infection causes redistribution of actin and loss of epithelial integrity, accompanied by production of C. difficile spores, toxins, and bacterial filaments. This system was used to examine C. difficile interactions with the commensal Bacteroides dorei, and interestingly, C. difficile growth is significantly reduced in the presence of B. dorei. Subsequently, we have developed novel models containing a myofibroblast layer, in addition to the epithelium, grown on polycarbonate or three-dimensional (3D) electrospun scaffolds. In these more complex models, C. difficile adheres more efficiently to epithelial cells, as compared to the single epithelial monolayers, leading to a quicker destruction of the epithelium. Our study describes new controlled environment human gut models that enable host-anaerobe and pathogen-commensal interaction studies in vitro.

16.
Trends Microbiol ; 25(3): 192-204, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27894646

RESUMO

Bacteria export proteins across membranes using a range of transport machineries. Type VII secretion systems (T7SSs), originally described in mycobacteria, are now known to be widespread across diverse bacterial phyla. Recent studies have characterized secretion components and mechanisms of type VII secretion in pathogenic and environmental bacteria. A variety of functions have been attributed to T7SS substrates, including interactions with eukaryotes and with other bacteria. Here, we evaluate the growing body of knowledge on T7SSs, with focus on the nonmycobacterial systems, reviewing their phylogenetic distribution, structure and function in diverse settings.


Assuntos
Bacillus subtilis/metabolismo , Mycobacterium tuberculosis/metabolismo , Transporte Proteico/fisiologia , Staphylococcus aureus/metabolismo , Sistemas de Secreção Tipo VII/metabolismo , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Mycobacterium tuberculosis/genética , Transporte Proteico/genética
17.
Infect Immun ; 82(10): 4144-53, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25047846

RESUMO

The opportunistic pathogen Staphylococcus aureus is one of the major causes of health care-associated infections. S. aureus is primarily an extracellular pathogen, but it was recently reported to invade and replicate in several host cell types. The ability of S. aureus to persist within cells has been implicated in resistance to antimicrobials and recurrent infections. However, few staphylococcal proteins that mediate intracellular survival have been identified. Here we examine if EsxA and EsxB, substrates of the ESAT-6-like secretion system (Ess), are important during intracellular S. aureus infection. The Esx proteins are required for staphylococcal virulence, but their functions during infection are unclear. While isogenic S. aureus esxA and esxB mutants were not defective for epithelial cell invasion in vitro, a significant increase in early/late apoptosis was observed in esxA mutant-infected cells compared to wild-type-infected cells. Impeding secretion of EsxA by deleting C-terminal residues of the protein also resulted in a significant increase of epithelial cell apoptosis. Furthermore, cells transfected with esxA showed an increased protection from apoptotic cell death. A double mutant lacking both EsxA and EsxB also induced increased apoptosis but, remarkably, was unable to escape from cells as efficiently as the single mutants or the wild type. Thus, using in vitro models of intracellular staphylococcal infection, we demonstrate that EsxA interferes with host cell apoptotic pathways and, together with EsxB, mediates the release of S. aureus from the host cell.


Assuntos
Apoptose , Proteínas de Bactérias/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/fisiologia , Interações Hospedeiro-Patógeno , Staphylococcus aureus/patogenicidade , Fatores de Virulência/metabolismo , Proteínas de Bactérias/genética , Linhagem Celular , Deleção de Genes , Humanos , Staphylococcus aureus/genética , Virulência , Fatores de Virulência/genética
18.
PLoS One ; 8(11): e81306, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24303041

RESUMO

Clostridium difficile is a major cause of infectious diarrhea worldwide. Although the cell surface proteins are recognized to be important in clostridial pathogenesis, biological functions of only a few are known. Also, apart from the toxins, proteins exported by C. difficile into the extracellular milieu have been poorly studied. In order to identify novel extracellular factors of C. difficile, we analyzed bacterial culture supernatants prepared from clinical isolates, 630 and R20291, using liquid chromatography-tandem mass spectrometry. The majority of the proteins identified were non-canonical extracellular proteins. These could be largely classified into proteins associated to the cell wall (including CWPs and extracellular hydrolases), transporters and flagellar proteins. Seven unknown hypothetical proteins were also identified. One of these proteins, CD630_28300, shared sequence similarity with the anthrax lethal factor, a known zinc metallopeptidase. We demonstrated that CD630_28300 (named Zmp1) binds zinc and is able to cleave fibronectin and fibrinogen in vitro in a zinc-dependent manner. Using site-directed mutagenesis, we identified residues important in zinc binding and enzymatic activity. Furthermore, we demonstrated that Zmp1 destabilizes the fibronectin network produced by human fibroblasts. Thus, by analyzing the exoproteome of C. difficile, we identified a novel extracellular metalloprotease that may be important in key steps of clostridial pathogenesis.


Assuntos
Clostridioides difficile/metabolismo , Metaloproteases/metabolismo , Proteômica , Zinco/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catálise , Clostridioides difficile/genética , Ativação Enzimática , Espaço Extracelular/metabolismo , Fibrinogênio/metabolismo , Fibroblastos , Fibronectinas/metabolismo , Humanos , Metaloproteases/química , Metaloproteases/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Transporte Proteico , Proteólise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
19.
Gut Microbes ; 4(5): 397-402, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23892245

RESUMO

Clostridium difficile infection (CDI) is a major healthcare-associated disease worldwide. Recurring infections and increasing antibiotic resistance have complicated treatment of CDI. While C. difficile spores are important for transmission and persistence of CDI, other factors such as gut colonization and formation of bacterial communities in the gut may also contribute to pathogenesis and persistence, but have not been well investigated. Recently, we reported that important clinical C. difficile strains are able to form composite biofilms in vitro. C. difficile biofilm formation is a complex process, modulated by several different factors, including cell surface components and regulators. We also reported that bacteria within biofilms are more resistant to high concentrations of vancomycin, the antibiotic of choice for treatment of CDI. Here we summarize our recent findings and discuss the implications of biofilm formation by this anaerobic gut pathogen in disease pathogenesis and treatment.


Assuntos
Biofilmes/crescimento & desenvolvimento , Clostridioides difficile/fisiologia
20.
J Bacteriol ; 195(3): 545-55, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23175653

RESUMO

Bacteria within biofilms are protected from multiple stresses, including immune responses and antimicrobial agents. The biofilm-forming ability of bacterial pathogens has been associated with increased antibiotic resistance and chronic recurrent infections. Although biofilms have been well studied for several gut pathogens, little is known about biofilm formation by anaerobic gut species. The obligate anaerobe Clostridium difficile causes C. difficile infection (CDI), a major health care-associated problem primarily due to the high incidence of recurring infections. C. difficile colonizes the gut when the normal intestinal microflora is disrupted by antimicrobial agents; however, the factors or processes involved in gut colonization during infection remain unclear. We demonstrate that clinical C. difficile strains, i.e., strain 630 and the hypervirulent strain R20291, form structured biofilms in vitro, with R20291 accumulating substantially more biofilm. Microscopic and biochemical analyses show multiple layers of bacteria encased in a biofilm matrix containing proteins, DNA, and polysaccharide. Employing isogenic mutants, we show that virulence-associated proteins, Cwp84, flagella, and a putative quorum-sensing regulator, LuxS, are all required for maximal biofilm formation by C. difficile. Interestingly, a mutant in Spo0A, a transcription factor that controls spore formation, was defective for biofilm formation, indicating a possible link between sporulation and biofilm formation. Furthermore, we demonstrate that bacteria in clostridial biofilms are more resistant to high concentrations of vancomycin, a drug commonly used for treatment of CDI. Our data suggest that biofilm formation by C. difficile is a complex multifactorial process and may be a crucial mechanism for clostridial persistence in the host.


Assuntos
Biofilmes/crescimento & desenvolvimento , Clostridioides difficile/fisiologia , Antibacterianos/farmacologia , Aderência Bacteriana , Biofilmes/efeitos dos fármacos , Clostridioides difficile/classificação , Clostridioides difficile/efeitos dos fármacos , Flagelos , Proteínas de Membrana/fisiologia , Testes de Sensibilidade Microbiana , Percepção de Quorum , Esporos Bacterianos , Fatores de Tempo , Vancomicina/farmacologia , Resistência a Vancomicina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...