Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(13): 9746-9764, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38514237

RESUMO

Lipid nanoparticles (LNPs) produced by antisolvent precipitation (ASP) are used in formulations for mRNA drug delivery. The mesoscopic structure of such complex multicomponent and polydisperse nanoparticulate systems is most relevant for their drug delivery properties, medical efficiency, shelf life, and possible side effects. However, the knowledge on the structural details of such formulations is very limited. Essentially no such information is publicly available for pharmaceutical dispersions approved by numerous medicine agencies for the use in humans and loaded with mRNA encoding a mimic of the spike protein of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) as, e.g., the Comirnaty formulation (BioNTech/Pfizer). Here, we present a simple preparation method to mimic the Comirnaty drug-free LNPs including a comparison of their structural properties with those of Comirnaty. Strong evidence for the liquid state of the LNPs in both systems is found in contrast to the designation of the LNPs as solid lipid nanoparticles by BioNTech. An exceptionally detailed and reliable structural model for the LNPs i.a. revealing their unexpected narrow size distribution will be presented based on a combined small-angle X-ray scattering and photon correlation spectroscopy (SAXS/PCS) evaluation method. The results from this experimental approach are supported by light microscopy, 1H NMR spectroscopy, Raman spectroscopy, cryogenic electron microscopy (cryoTEM), and simultaneous SAXS/SANS studies. The presented results do not provide direct insights on particle formation or dispersion stability but should contribute significantly to better understanding the LNP drug delivery process, enhancing their medical benefit, and reducing side effects.


Assuntos
Vacina BNT162 , Nanopartículas , Humanos , Lipídeos/química , RNA Mensageiro/genética , Espalhamento a Baixo Ângulo , Difração de Raios X , Lipossomos , Nanopartículas/química , RNA Interferente Pequeno/genética
3.
Sci Rep ; 13(1): 4458, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932106

RESUMO

Isolated active sites have great potential to be highly efficient and stable in heterogeneous catalysis, while enabling low costs due to the low transition metal content. Herein, we present results on the synthesis, first catalytic trials, and characterization of the Ga9Rh2 phase and the hitherto not-studied Ga3Rh phase. We used XRD and TEM for structural characterization, and with XPS, EDX we accessed the chemical composition and electronic structure of the intermetallic compounds. In combination with catalytic tests of these phases in the challenging propane dehydrogenation and by DFT calculations, we obtain a comprehensive picture of these novel catalyst materials. Their specific crystallographic structure leads to isolated Rhodium sites, which is proposed to be the decisive factor for the catalytic properties of the systems.

4.
Adv Sci (Weinh) ; 9(25): e2202803, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35780494

RESUMO

Utilizing ionizing radiation for in situ studies in liquid media enables unique insights into nanostructure formation dynamics. As radiolysis interferes with observations, kinetic simulations are employed to understand and exploit beam-liquid interactions. By introducing an intuitive tool to simulate arbitrary kinetic models for radiation chemistry, it is demonstrated that these models provide a holistic understanding of reaction mechanisms. This is shown for irradiated HAuCl4 solutions allowing for quantitative prediction and tailoring of redox processes in liquid-phase transmission electron microscopy (LP-TEM). Moreover, it is demonstrated that kinetic modeling of radiation chemistry is applicable to investigations utilizing X-rays such as X-ray diffraction (XRD). This emphasizes that beam-sample interactions must be considered during XRD in liquid media and shows that reaction kinetics do not provide a threshold dose rate for gold nucleation relevant to LP-TEM and XRD. Furthermore, it is unveiled that oxidative etching of gold nanoparticles depends on both, precursor concentration, and dose rate. This dependency is exploited to probe the electron beam-induced shift in Gibbs free energy landscape by analyzing critical radii of gold nanoparticles.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Ouro/química , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão , Difração de Raios X
5.
Langmuir ; 38(7): 2227-2237, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35113578

RESUMO

Some studies have speculated that the concentration of bromide ions plays a crucial role in the surfactant density surrounding gold nanorods (AuNR). Small-angle X-ray and neutron scattering (SAXS and SANS) experiments were conducted to analyze any influence the bromide ions might have on the stabilization layer and the aggregation behavior of the ligand CTAB molecules in general. The AuNR were immersed in solutions containing a fixed CTA+ concentration of 2 mM and varying bromide ion concentrations from 0 to 22 mM. A patchy AuNR stabilization shell at low bromide ion concentrations was found, contrary to previously published SANS studies on the AuNR stabilization shell. However, with increasing bromide ion concentration, the density of the stabilization shell increases asymptotically toward a closed/collapsed bilayer configuration. AuNR grown under similar conditions show higher anisotropy with larger bromide ion concentrations. Both results indicate that anisotropic growth strongly depends on a sufficiently dense stabilization layer established by high bromide ion concentrations.

6.
Chemistry ; 28(20): e202200100, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35172023

RESUMO

Adding to the versatile class of ionic liquids, we report the detailed structure and property analysis of a new class of asymmetrically substituted imidazolium salts, offering interesting thermal characteristics, such as liquid crystalline behavior, polymorphism or glass transitions. A scalable general synthetic procedure for N-polyaryl-N'-alkyl-functionalized imidazolium salts with para-substituted linker (L) moieties at the aryl chain, namely [LPhm ImH R]+ (L=Br, CN, SMe, CO2 Et, OH; m=2, 3; R=C12 , PEGn ; n=2, 3, 4), was developed. These imidazolium salts were studied by single-crystal X-ray diffraction (SC-XRD), NMR spectroscopy and thermochemical methods (DSC, TGA). Furthermore, these imidazolium salts were used as N-heterocyclic carbene (NHC) ligand precursors for mononuclear, first-row transition metal complexes (MnII , FeII , CoII , NiII , ZnII , CuI , AgI , AuI ) and for the dinuclear Ti-supported Fe-NHC complex [(OPy)2 Ti(OPh2 ImC12 )2 (FeI2 )] (OPy=pyridin-2-ylmethanolate). The complexes were studied concerning their structural and magnetic behavior via multi-nuclear NMR spectroscopy, SC-XRD analyses, variable temperature and field-dependent (VT-VF) SQUID magnetization methods, X-band EPR spectroscopy and, where appropriate, zero-field 57 Fe Mössbauer spectroscopy.

7.
ACS Appl Mater Interfaces ; 13(27): 32461-32466, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34213306

RESUMO

Semiconducting self-assembled monolayers (SAMs) represent highly relevant components for the fabrication of organic thin-film electronics because they enable the precise formation of active π-conjugates in terms of orientation and layer thickness. In this work, we demonstrate self-assembled monolayer field-effect transistors (SAMFETs) composed of phosphonic acid oligomers of 3-hexylthiophene (oligothiophenes-OT) with systematic variations of thiophene repeating units (5, 10, and 20). The devices exhibit stable lateral charge transport with increased mobility as a function of thiophene unit counts. Importantly, our work reveals the packing and intermolecular order of varied-chain-length SAMs at the molecular scale via X-ray reflectivity (XRR) and quantitative X-ray photoelectron spectroscopy (XPS). Short oligomers (OT5-PA and OT10-PA) arrange almost perpendicular to the substrate, forming highly ordered SAMs, whereas the long-chain OT20-PA exhibits a folded structure. By tuning the molecular order in the monolayers via the SAM substitution reaction, the OT20-PA devices show a tripling in mobility.

8.
Chemistry ; 27(68): 16978-16989, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34156122

RESUMO

Outer-sphere radical hydrogenation of olefins proceeds via stepwise hydrogen atom transfer (HAT) from transition metal hydride species to the substrate. Typical catalysts exhibit M-H bonds that are either too weak to efficiently activate H2 or too strong to reduce unactivated olefins. This contribution evaluates an alternative approach, that starts from a square-planar cobalt(II) hydride complex. Photoactivation results in Co-H bond homolysis. The three-coordinate cobalt(I) photoproduct binds H2 to give a dihydrogen complex, which is a strong hydrogen atom donor, enabling the stepwise hydrogenation of both styrenes and unactivated aliphatic olefins with H2 via HAT.

9.
Small ; 17(20): e2100487, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33817974

RESUMO

The preparation of a highly ordered nanostructured transparent electrode based on a combination of nanosphere lithography and anodization is presented. The size of perfectly ordered pore domains is improved by an order of magnitude with respect to the state of the art. The concomitantly reduced density of defect pores increases the fraction of pores that are in good electrical contact with the underlying transparent conductive substrate. This improvement in structural quality translates directly and linearly into an improved performance of energy conversion devices built from such electrodes in a linear manner.


Assuntos
Óxido de Alumínio , Nanoestruturas , Eletrodos , Desempenho Físico Funcional
10.
Front Cell Dev Biol ; 8: 579388, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195218

RESUMO

Lipids and proteins, as essential components of biological cell membranes, exhibit a significant degree of freedom for different kinds of motions including lateral long-range mobility. Due to their interactions, they not only preserve the cellular membrane but also contribute to many important cellular functions as e.g., signal transport or molecular exchange of the cell with its surrounding. Many of these processes take place on a short time (up to some nanoseconds) and length scale (up to some nanometers) which is perfectly accessible by quasielastic neutron scattering (QENS) experiments and molecular dynamics (MD) simulations. In order to probe the influence of a peptide, a transmembrane sequence of the transferrin receptor (TFRC) protein, on the dynamics of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) large unilamellar vesicles (LUVs) on a nanosecond time scale, high-resolution QENS experiments and complementary MD simulations have been utilized. By using different scattering contrasts in the experiment (chain-deuterated lipids and protonated lipids, respectively), a model could be developed which allows to examine the lipid and peptide dynamics separately. The experimental results revealed a restricted lipid lateral mobility in the presence of the TFRC transmembrane peptides. Also the apparent self-diffusion coefficient of the lateral movement of the peptide molecules could be determined quantitatively for the probed short-time regime. The findings could be confirmed very precisely by MD simulations. Furthermore, the article presents an estimation for the radius of influence of the peptides on the lipid long-range dynamics which could be determined by consistently combining results from experiment and simulation.

11.
Langmuir ; 36(40): 12077-12086, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-32960065

RESUMO

The mechanism behind the stability of organic nanoparticles prepared by liquid antisolvent (LAS) precipitation without a specific stabilizing agent is poorly understood. In this work, we propose that the organic solvent used in the LAS process rapidly forms a molecular stabilizing layer at the interface of the nanoparticles with the aqueous dispersion medium. To confirm this hypothesis, n-octadecyltrichlorosilane (OTS)-functionalized silicon wafers in contact with water-solvent mixtures were used as a flat model system mimicking the solid-liquid interface of the organic nanoparticles. We studied the equilibrium structure of the interface by X-ray reflectometry (XRR) for water-solvent mixtures (methanol, ethanol, 1-propanol, 2-propanol, acetone, and tetrahydrofuran). The formation of an organic solvent-rich layer at the solid-liquid interface was observed. The layer thickness increases with the organic solvent concentration and correlates with the polar and hydrogen bond fraction of Hansen solubility parameters. We developed a self-consistent adsorption model via complementing adsorption isotherms obtained from XRR data with molecular dynamics simulations.

12.
J Appl Crystallogr ; 53(Pt 4): 1080-1086, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32788905

RESUMO

AlN slices from bulk crystals grown under low thermomechanical stress conditions via the physical vapor transport (PVT) method were analyzed by X-ray methods to study the influence of the growth mode on the crystal quality. Defect types and densities were analyzed along axial [0001] as well as lateral growth directions. X-ray diffraction (0110) rocking-curve mappings of representative wafer cuts reveal a low mean FWHM of 13.4 arcsec, indicating the generally high crystal quality. The total dislocation density of 2 × 103 cm-2 as determined by X-ray topography is low and dislocations are largely threading edge dislocations of b = 1/3〈1120〉 type. The absence of basal plane dislocations in homogeneous crystal regions void of macroscopic defects can be linked to the low-stress growth conditions. Under the investigated growth conditions this high crystal quality can be maintained both along the axial [0001] direction and within lateral growth directions. Exceptions to this are some locally confined, misoriented grains and defect clusters, most of which are directly inherited from the seed or are formed due to the employed seed fixation technique on the outer periphery of the crystals. Seed-shaping experiments indicate no apparent kinetic limitations for an enhanced lateral expansion rate and the resulting crystal quality, specifically with regard to the growth mode on a-face facets.

13.
J Appl Crystallogr ; 53(Pt 3): 722-733, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32684887

RESUMO

Exploiting small-angle X-ray and neutron scattering (SAXS/SANS) on the same sample volume at the same time provides complementary nanoscale structural information in two different contrast situations. Unlike an independent experimental approach, the truly combined SAXS/SANS experimental approach ensures the exactness of the probed samples, particularly for in situ studies. Here, an advanced portable SAXS system that is dimensionally suitable for installation in the D22 zone of ILL is introduced. The SAXS apparatus is based on a Rigaku switchable copper/molybdenum microfocus rotating-anode X-ray generator and a DECTRIS detector with a changeable sample-to-detector distance of up to 1.6 m in a vacuum chamber. A case study is presented to demonstrate the uniqueness of the newly established method. Temporal structural rearrangements of both the organic stabilizing agent and organically capped gold colloidal particles during gold nanoparticle growth are simultaneously probed, enabling the immediate acquisition of correlated structural information. The new nano-analytical method will open the way for real-time investigations of a wide range of innovative nanomaterials and will enable comprehensive in situ studies on biological systems. The potential development of a fully automated SAXS/SANS system with a common control environment and additional sample environments, permitting a continual and efficient operation of the system by ILL users, is also introduced.

14.
Adv Mater ; 32(16): e1908305, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32108389

RESUMO

As the power conversion efficiency (PCE) of organic solar cells (OSCs) has surpassed the 17% baseline, the long-term stability of highly efficient OSCs is essential for the practical application of this photovoltaic technology. Here, the photostability and possible degradation mechanisms of three state-of-the-art polymer donors with a commonly used nonfullerene acceptor (NFA), IT-4F, are investigated. The active-layer materials show excellent intrinsic photostability. The initial morphology, in particular the mixed region, causes degradation predominantly in the fill factor (FF) under illumination. Electron traps are formed due to the reorganization of polymers and diffusion-limited aggregation of NFAs to assemble small isolated acceptor domains under illumination. These electron traps lead to losses mainly in FF, which is in contradistinction to the degradation mechanisms observed for fullerene-based OSCs. Control of the composition of NFAs close to the thermodynamic equilibrium limit while keeping adequate electron percolation and improving the initial polymer and NFA ordering are of the essence to stabilize the FF in NFA-based solar cells, which may be the key tactics to develop next-generation OSCs with high efficiency as well as excellent stability.

15.
Small ; 16(2): e1903729, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31778297

RESUMO

Precise control over the ratio of perylene bisimide (PBI) monomers and aggregates, immobilized on alumina nanoparticle (NP) surfaces, is demonstrated. Towards this goal, phosphonic acid functionalized PBI derivatives (PA-PBI) are shown to self-assemble into stoichiometrically mixed monolayers featuring aliphatic, glycolic, or fluorinated phosphonic acid ligands, serving as imbedding matrix (PA-M) to afford core-shell NPs. Different but, nevertheless, defined PBI monomer/aggregate composition is achieved by either the variation in the PA-PBI to PA-M ratios, or the utilization of different PA-Ms. Various steady-state as well as time-resolved spectroscopy techniques are applied to probe the core-shell NPs with respect to changes in their optical properties upon variations in the shell composition. To this end, the ratio between monomer and excimer-like emission assists in deriving information on the self-assembled monolayer composition, local ordering, and corresponding aggregate content. With the help of X-ray reflectivity measurements, accompanied by molecular dynamics simulations, the built-up of the particle shells, in general, and the PBI aggregation behavior, in particular, are explored in depth.

16.
Langmuir ; 35(42): 13578-13587, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31547660

RESUMO

Antisolvent precipitation (AP) is a low-cost and less-invasive preparation alternative for organic nanoparticles compared to top-down methods such as high-pressure homogenization or milling. Here we report on particularly small organic nanoparticles (NPs) prepared by AP. It has been found for various materials that these NPs in their liquid state exhibit a significant degree of molecular order at their interface toward the dispersion medium including ubiquinones (coenzyme Q10), triglycerides (trimyristin, tripalmitin), and alkanes (tetracosane). This finding is independent of the use of a stabilizer in the formulation. While this is obviously a quite general interfacial structuring effect, the respective structural details of specific NPs systems might differ. Here, a detailed structural characterization of very small liquid coenzyme Q10 (Q10) NPs is presented as a particular example for this phenomenon. The Q10 NPs have been prepared by AP in the presence of two different stabilizers, sodium dodecyl sulfate (SDS) and pentaethylene glycol monododecyl ether (C12E5), respectively, and without any stabilizer. The NPs' size is initially analyzed by photon correlation spectroscopy (PCS). The SDS-stabilized Q10 NPs have been studied further by differential scanning calorimetry (DSC), small-angle X-ray and neutron scattering (SAXS, SANS), wide-angle X-ray scattering (WAXS), and cryogenic transmission electron microscopy (CryoTEM). A simultaneous analysis of SAXS and contrast variation SANS studies revealed the molecular arrangement within the interface between the NPs and the dispersion medium. The Q10 NPs stabilized by SDS and C12E5, respectively, are small (down to 19.9 nm) and stable (for at least 16 months) even when no stabilizer is used. The SDS-stabilized Q10 NPs reported here, are therewith, to the best of our knowledge, the smallest organic NPs which have been reported to be prepared by AP so far. In particular, these NPs exhibit a core-shell structure consisting of an amorphous Q10 core and a surrounding shell, which is mainly composed of oriented Q10 molecules and aligned SDS molecules. This structure suggests a significant amphiphilic behavior and a rather unexpected stabilizing role of Q10 molecules.

17.
Inorg Chem ; 58(16): 11256-11268, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31385695

RESUMO

The magnetism of the mixed-valence high-spin cluster [Mn18SrO8(N3)7Cl(MedhmpH)12(MeCN)6]Cl2 (1) exhibiting intramolecular ferromagnetic interactions was studied using inelastic neutron scattering (INS), and reliable values for the exchange coupling constants were determined based on the quality of simultaneous fits to the INS and magnetic data. The challenge of the huge size of the Hilbert space (3 375 000) and many exchange coupling constants (7 assuming a C3 symmetry) generally encountered in large spin clusters was resolved as follows: (a) The results of the restricted Hilbert space ferromagnetic cluster spin wave theory were compared to the experimental spectroscopic data. The observed INS transitions were thus assigned to spin wave excitations in a bounded ferromagnetic spin cluster and moreover could be visualized in a straightforward way based on this theory. (b) Simultaneously, Quantum Monte Carlo (QMC) calculations of the temperature-dependent magnetic susceptibility with the same parameter set were compared to the experimental data. Application of state-of-the-art QMC algorithms, as available in the open source ALPS package, in ferromagnetic clusters avoids the full Hamiltonian diagonalization without sacrificing calculation accuracy of the magnetic susceptibility down to the lowest temperatures, which was crucial for the successful analysis. The combined fits revealed two exchange-coupling models with equally good overall agreement to the data. Our preferred model was inspired by magnetostructural correlations and is consistent with them. The model involves three different exchange interactions, one describing the interaction between the core MnIII spins Ja = 14.3(1.0) K and two interactions linking the core and the peripheral MnII spins: Jb = 8.3(4) K and J6 = 3.6(4) K. The use of open-source QMC software and our systematic approach to fitting multiple sets of data obtained by different experimental techniques are described in detail and are generally applicable for understanding large ferromagnetically coupled clusters.

18.
ACS Appl Mater Interfaces ; 11(20): 18555-18563, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31046222

RESUMO

Worldwide research efforts have been devoted to organic photovoltaics in the hope of a large-scale commercial application in the near future. To meet the industrial production requirements, organic photovoltaics that can reach power conversion efficiency (PCE) of over 10% along with promising operational device stability are of utmost interest. In the study, we take PCE11:PCBM as a model system, which can achieve over 11% PCE when processed from nonhalogen solvents, to deeply investigate the morphology-performance-stability correlation. We demonstrate that four batches of PCE11 with varying crystalline properties can achieve similar high performance in combination with PCBM. Careful device optimization is necessary in each case to properly address the requirements for the quite distinct microstructures. The bulk-heterojunction (BHJ) microstructure is comprehensively investigated as a function of the macromolecular weight and crystallinity. It is demonstrated that small differences in morphology significantly affect the kinetics and thermodynamic equilibrium of the BHJ microstructure as well as the photostability and thermal stability of the PCE11:PCBM solar cells.

19.
Nat Commun ; 9(1): 5335, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30559396

RESUMO

There is a strong market driven need for processing organic photovoltaics from eco-friendly solvents. Water-dispersed organic semiconducting nanoparticles (NPs) satisfy these premises convincingly. However, the necessity of surfactants, which are inevitable for stabilizing NPs, is a major obstacle towards realizing competitive power conversion efficiencies for water-processed devices. Here, we report on a concept for minimizing the adverse impact of surfactants on solar cell performance. A poloxamer facilitates the purification of organic semiconducting NPs through stripping excess surfactants from aqueous dispersion. The use of surfactant-stripped NPs based on poly(3-hexylthiophene) / non-fullerene acceptor leads to a device efficiency and stability comparable to the one from devices processed by halogenated solvents. A record efficiency of 7.5% is achieved for NP devices based on a low-band gap polymer system. This elegant approach opens an avenue that future organic photovoltaics processing may be indeed based on non-toxic water-based nanoparticle inks.

20.
J Phys Condens Matter ; 30(49): 495001, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30426969

RESUMO

Cetyltrimethylammonium bromide (CTAB) is one of the most commonly used surfactants in nanoparticle synthesis and stabilization. Usually, CTAB is used in high concentrations besides co-surfactants leading to well defined products but the complex mesoscopic CTAB structures stay mostly unknown. N-alcohols for instance are widely used co-surfactants which modify the properties of native CTAB dispersions. In this paper we report about a detailed structure analysis of n-alcohol modified CTAB micelles. In particular, n-pentanol and n-hexanol exhibit a significantly different influence on the size, shape and composition of CTAB micelles. Using a combination of small-angle x-ray spectroscopy (SAXS) and neutron scattering spectroscopy (SANS), we applied a method for a complete structural characterization of such micelles. The incorporation of n-pentanol into CTAB micelles generally does not influence the morphology but enhances the number of micelles due to the volume of the added alcohol. N-hexanol, however, leads to an elongation of the micelles as a function of its concentration. It was found by extended contrast variation measurements that this difference is caused by a different distribution of the alcohols between the micellar core and shell. N-pentanol molecules are generally located at the core-shell interface of the CTAB micelles with not only the head group but also two additional methylene bridging groups located in the micellar shell. This leads to an increase of its effective head group volume. In comparison, in n-hexanol modified micelles the whole alkyl chain is located within the micellar core. The detailed structure for n-alcohol modified CTAB micelles is described herein for the first time. The knowledge of the structural details found is indispensable for an in-depth understanding of CTAB-n-alcohol-water interfaces in general which is relevant for the synthesis of many functional nanostructures like mesoporous silica and gold or silver nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...