Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Plant Sci ; 13: 1013222, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507401

RESUMO

To maximize the opportunities of seagrass as a nature-based solution requires restoration to occur on a large scale. New methods and knowledge are required that can solve ecological bottlenecks, improving its reliability and effectiveness. Although there is increasing interest in the use of seeds for seagrass restoration there exists a limited understanding of how best to plant them with the most knowledge on germination and seedling emergence coming from laboratory studies. Here we present the results of a novel field study on the emergence success of seeds of the seagrass Zostera marina when subjected to varied planting treatments. Seeds were planted into hessian bags according to a factorial design of three treatments (sediment type, detritus addition, and nutrient addition). By adding nutrients to natural sediment, the present study provides some evidence of seagrass shoot emergence and maximum shoot length doubling. The present study provides evidence that even in heavily nutrient-rich environments, seagrass sediments may require additional nutrients to improve seedling emergence and growth. It also highlights the highly variable nature of planting seagrass seeds in shallow coastal environments. Critically this study provides increasing levels of evidence that small subtleties in the method can have large consequences for seagrass restoration and that for restoration to scale to levels that are relevant for nature-based solutions there remain many unknowns that require consideration.

3.
Mar Pollut Bull ; 134: 99-105, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29573811

RESUMO

Our understanding of global seagrass ecosystems comes largely from regions characterized by human impacts with limited data from habitats defined as notionally pristine. Seagrass assessments also largely focus on shallow-water coastal habitats with comparatively few studies on offshore deep-water seagrasses. We satellite tracked green turtles (Chelonia mydas), which are known to forage on seagrasses, to a remote, pristine deep-water environment in the Western Indian Ocean, the Great Chagos Bank, which lies in the heart of one of the world's largest marine protected areas (MPAs). Subsequently we used in-situ SCUBA and baited video surveys to survey the day-time sites occupied by turtles and discovered extensive monospecific seagrass meadows of Thalassodendron ciliatum. At three sites that extended over 128 km, mean seagrass cover was 74% (mean range 67-88% across the 3 sites at depths to 29 m. The mean species richness of fish in seagrass meadows was 11 species per site (mean range 8-14 across the 3 sites). High fish abundance (e.g. Siganus sutor: mean MaxN.site-1 = 38.0, SD = 53.7, n = 5) and large predatory shark (Carcharhinus amblyrhynchos) (mean MaxN.site-1 = 1.5, SD = 0.4, n = 5) were recorded at all sites. Such observations of seagrass meadows with large top predators, are limited in the literature. Given that the Great Chagos Bank extends over approximately 12,500 km2 and many other large deep submerged banks exist across the world's oceans, our results suggest that deep-water seagrass may be far more abundant than previously suspected.


Assuntos
Alismatales/fisiologia , Monitoramento Ambiental/métodos , Animais , Conservação dos Recursos Hídricos , Ecossistema , Peixes , Oceano Índico , Comunicações Via Satélite , Tubarões , Tartarugas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...