Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(11)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37299881

RESUMO

The use of IoT technology is rapidly increasing in healthcare development and smart healthcare system for fitness programs, monitoring, data analysis, etc. To improve the efficiency of monitoring, various studies have been conducted in this field to achieve improved precision. The architecture proposed herein is based on IoT integrated with a cloud system in which power absorption and accuracy are major concerns. We discuss and analyze development in this domain to improve the performance of IoT systems related to health care. Standards of communication for IoT data transmission and reception can help to understand the exact power absorption in different devices to achieve improved performance for healthcare development. We also systematically analyze the use of IoT in healthcare systems using cloud features, as well as the performance and limitations of IoT in this field. Furthermore, we discuss the design of an IoT system for efficient monitoring of various healthcare issues in elderly people and limitations of an existing system in terms of resources, power absorption and security when implemented in different devices as per requirements. Blood pressure and heartbeat monitoring in pregnant women are examples of high-intensity applications of NB-IoT (narrowband IoT), technology that supports widespread communication with a very low data cost and minimum processing complexity and battery lifespan. This article also focuses on analysis of the performance of narrowband IoT in terms of delay and throughput using single- and multinode approaches. We performed analysis using the message queuing telemetry transport protocol (MQTTP), which was found to be efficient compared to the limited application protocol (LAP) in sending information from sensors.


Assuntos
Comunicação , Análise de Dados , Idoso , Feminino , Humanos , Gravidez , Pressão Sanguínea , Fontes de Energia Elétrica , Exercício Físico , Internet das Coisas , Computação em Nuvem
2.
Opt Lett ; 45(5): 1196-1199, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32108804

RESUMO

Far-infrared absorbers exhibiting wideband performance are in great demand in numerous applications, including imaging, detection, and wireless communications. Here, a nonresonant far-infrared absorber with ultra-wideband operation is proposed. This absorber is in the form of inverted pyramidal cavities etched into moderately doped silicon. By means of a wet-etching technique, the crystallinity of silicon restricts the formation of the cavities to a particular shape in an angle that favors impedance matching between lossy silicon and free space. Far-infrared waves incident on this absorber experience multiple reflections on the slanted lossy silicon side walls, being dissipated towards the cavity bottom. The simulation and measurement results confirm that an absorption beyond 90% can be sustained from 1.25 to 5.00 THz. Furthermore, the experiment results suggest that the absorber can operate up to at least 21.00 THz with a specular reflection less than 10% and negligible transmission.

3.
Opt Express ; 22(13): 16148-60, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24977867

RESUMO

A reflectarray is designed and demonstrated experimentally for polarization-dependent beam splitting at 1 THz. This reflective component is composed of two sets of orthogonal strip dipoles arranged into interlaced triangular lattices over a ground plane. By varying the length and width of the dipoles a polarization-dependent localized phase change is achieved on reflection, allowing periodic subarrays with a desired progressive phase distribution. Both the simulated field distributions and the measurement results from a fabricated sample verify the validity of the proposed concept. The designed terahertz reflectarray can efficiently separate the two polarization components of a normally incident wave towards different predesigned directions of ±30°. Furthermore, the measured radiation patterns show excellent polarization purity, with a cross-polarization level below -27 dB. The designed reflectarray could be applied as a polarizing beam splitter for polarization-sensitive terahertz imaging or for emerging terahertz communications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...