Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Geochem Health ; 46(5): 171, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592558

RESUMO

Cyantraniliprole (CY), an anthranilic diamide insecticide widely used in grape farming for controlling various sucking pests, poses ecological concerns, particularly when applied as soil drenching due to the formation of more toxic and persistent metabolites. This study established the dissipation and degradation mechanisms of CY in grape rhizosphere soil using high-resolution Orbitrap-LC/MS analysis. The persistence of CY residues beyond 60 days was observed, with dissipation following biphasic first + first-order kinetics and a half-life of 15 to 21 days. The degradation mechanism of CY in the soil was elucidated, with identified metabolites such as IN-J9Z38, IN-JCZ38, IN-N7B69, and IN-QKV54. Notably, CY was found to predominantly convert to the highly persistent metabolite IN-J9Z38, raising environmental concerns. The impact of CY residues on soil enzyme activity was investigated, revealing a negative effect on dehydrogenase, alkaline phosphatase, and acid phosphatase activity, indicating significant implications for phosphorous mineralization and soil health. Furthermore, bacterial isolates were obtained from CY-enriched soil, with five isolates (CY3, CY4, CY9, CY11, and CY20) demonstrating substantial degradation potential, ranging from 66 to 92% of CY residues. These results indicate that the identified bacteria hold potential for commercial use in addressing pesticide residue contamination in soil through bioremediation techniques.


Assuntos
Pirazóis , Solo , ortoaminobenzoatos , Biodegradação Ambiental , Bactérias/genética
2.
Environ Sci Pollut Res Int ; 31(10): 15770-15787, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38305977

RESUMO

This paper illustrates the non-target impact of imidacloprid (IM) residues on the grape global metabolome and biomarker identification with high-resolution mass spectrometry. IM was applied at the recommended dose (SD), and ten times SD (10 RD). The global metabolome analysis revealed that 21 metabolites were up- and down-regulated with IM SD treatment. In 10 RD, 9 metabolites were upregulated, and 28 were downregulated. Pathway enrichment analysis revealed the primary and secondary pathway disruption in grapes. Berry quality was affected with decrease in flavonoids by 32.97% in 10 RD; phenols were reduced by 53.93 in SD, 50.8% in 10 RD. The non-target and target study revealed the degradation of IM in grapes to desnitro-IM and IM-urea which were identified as a potential biomarker for IM residues in grapes, which would benefit the authentication of organic product. Overall, imidacloprid showed a significant impact on the grape metabolome and quality.


Assuntos
Nitrocompostos , Vitis , Vitis/química , Frutas/química , Metaboloma , Neonicotinoides/análise
3.
BMC Genomics ; 22(1): 776, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34717533

RESUMO

BACKGROUND: Grapevine (Vitis vinifera) productivity has been severely affected by various bacterial, viral and fungal diseases worldwide. When a plant is infected with the pathogen, various defense mechanisms are subsequently activated in plants at various molecular levels. Thus, for substantiating the disease control in an eco-friendly way, it is essential to understand the molecular mechanisms governing pathogen resistance in grapes. RESULTS: In our study, we performed genome-wide identification of various defensive genes expressed during powdery mildew (PM) and downy mildew (DM) infections in grapevine. Consequently, we identified 6, 21, 2, 5, 3 and 48 genes of Enhanced Disease Susceptibility 1 (EDS1), Non-Race-specific Disease Resistance (NDR1), Phytoalexin deficient 4 (PAD4), Nonexpressor of PR Gene (NPR), Required for Mla-specified resistance (RAR) and Pathogenesis Related (PR), respectively, in the grapevine genome. The phylogenetic study revealed that V. vinifera defensive genes are evolutionarily related to Arabidopsis thaliana. Differential expression analysis resulted in identification of 2, 4, 7, 2, 4, 1 and 7 differentially expressed Nucleotide-binding leucine rich repeat receptor (NLR), EDS1, NDR1, PAD4, NPR, RAR1 and PR respectively against PM infections and 28, 2, 5, 4, 1 and 19 differentially expressed NLR, EDS1, NDR1, NPR, RAR1 and PR respectively against DM infections in V. vinifera. The co-expression study showed the occurrence of closely correlated defensive genes that were expressed during PM and DM stress conditions. CONCLUSION: The PM and DM responsive defensive genes found in this study can be characterized in future for impelling studies relaying fungal and oomycete resistance in plants, and the functionally validated genes would then be available for conducting in-planta transgenic gene expression studies for grapes.


Assuntos
Oomicetos , Vitis , Regulação da Expressão Gênica de Plantas , Humanos , Oomicetos/metabolismo , Filogenia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pós , Vitis/genética , Vitis/metabolismo
4.
BMC Plant Biol ; 21(1): 265, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103007

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) are regulatory transcripts of length > 200 nt. Owing to the rapidly progressing RNA-sequencing technologies, lncRNAs are emerging as considerable nodes in the plant antifungal defense networks. Therefore, we investigated their role in Vitis vinifera (grapevine) in response to obligate biotrophic fungal phytopathogens, Erysiphe necator (powdery mildew, PM) and Plasmopara viticola (downy mildew, DM), which impose huge agro-economic burden on grape-growers worldwide. RESULTS: Using computational approach based on RNA-seq data, 71 PM- and 83 DM-responsive V. vinifera lncRNAs were identified and comprehensively examined for their putative functional roles in plant defense response. V. vinifera protein coding sequences (CDS) were also profiled based on expression levels, and 1037 PM-responsive and 670 DM-responsive CDS were identified. Next, co-expression analysis-based functional annotation revealed their association with gene ontology (GO) terms for 'response to stress', 'response to biotic stimulus', 'immune system process', etc. Further investigation based on analysis of domains, enzyme classification, pathways enrichment, transcription factors (TFs), interactions with microRNAs (miRNAs), and real-time quantitative PCR of lncRNAs and co-expressing CDS pairs suggested their involvement in modulation of basal and specific defense responses such as: Ca2+-dependent signaling, cell wall reinforcement, reactive oxygen species metabolism, pathogenesis related proteins accumulation, phytohormonal signal transduction, and secondary metabolism. CONCLUSIONS: Overall, the identified lncRNAs provide insights into the underlying intricacy of grapevine transcriptional reprogramming/post-transcriptional regulation to delay or seize the living cell-dependent pathogen growth. Therefore, in addition to defense-responsive genes such as TFs, the identified lncRNAs can be further examined and leveraged to candidates for biotechnological improvement/breeding to enhance fungal stress resistance in this susceptible fruit crop of economic and nutritional importance.


Assuntos
Resistência à Doença/genética , Resistência à Doença/imunologia , Erysiphe/patogenicidade , Peronospora/patogenicidade , Doenças das Plantas/genética , Imunidade Vegetal/genética , RNA Longo não Codificante , Vitis/genética , Produtos Agrícolas/genética , Produtos Agrícolas/imunologia , Produtos Agrícolas/microbiologia , Erysiphe/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Estudo de Associação Genômica Ampla , Peronospora/imunologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Vitis/imunologia , Vitis/microbiologia
5.
Genomics ; 112(1): 312-322, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30802599

RESUMO

NBS-LRR comprises a large class of disease resistance (R) proteins that play a widespread role in plant protection against pathogens. In grapevine, powdery mildew cause significant losses in its productivity and efforts are being directed towards finding of resistance loci or genes imparting resistance/tolerance against such fungal diseases. In the present study, we performed genome-wide analysis of NBS-LRR genes during PM infection in grapevine. We identified 18, 23, 12, 16, 10, 10, 9, 20 and 14 differentially expressed NBS-LRR genes in response to PM infection in seven partially PM-resistant (DVIT3351.27, Husseine, Karadzhandal, Khalchili, Late vavilov, O34-16, Sochal) and 2 PM-susceptible (Carignan and Thompson seedless) V. vinifera accessions. Further, the identified sequences were characterized based on chromosomal locations, physicochemical properties, gene structure and motif analysis, and functional annotation by Gene Ontology (GO) mapping. The NBS-LRR genes responsive to powdery mildew could potentially be exploited to improve resistance in grapes.


Assuntos
Ascomicetos , Proteínas NLR/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Vitis/genética , Vitis/microbiologia , Cromossomos de Plantas , Resistência à Doença/genética , Genoma de Planta , Família Multigênica , Proteínas NLR/química , Proteínas NLR/classificação , Proteínas NLR/metabolismo , Filogenia , Doenças das Plantas/genética , Proteínas de Plantas/química , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas
6.
J Proteome Res ; 19(2): 583-599, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31808345

RESUMO

Thompson Seedless, a commonly grown table grape variety, is sensitive to salinity when grown on its own roots, and therefore, it is frequently grafted onto salinity-tolerant wild grapevine rootstocks. Rising soil salinity is a growing concern in irrigated agricultural systems. The accumulation of salts near the root zone severely hampers plant growth, leading to a decrease in the productive lifespan of grapevine and causing heavy yield losses to the farmer. In the present study, we investigated the differences in response to salinity between own-rooted Thompson Seedless (TSOR) and 110R-grafted Thompson Seedless (TS110R) grapevines, wherein 110R is reported to be a salt-tolerant rootstock. The grapevines were subjected to salt stress by treating them with a 150 mM NaCl solution. The stress-induced changes in protein abundance were investigated using a label-free shotgun proteomics approach at three time-points viz. 6 h, 48 h, and 7 days of salt treatment. A total of 2793 proteins were identified, of which 246 were differentially abundant at various time-points in TSOR and TS110R vines. The abundance of proteins involved in several biological processes such as photosynthesis, amino acid metabolism, translation, chlorophyll biosynthesis, and generation of precursor metabolites was significantly affected by salt stress in both the vines but at different stages of stress. The results revealed that TSOR vines responded fervently to salt stress, while TS110R vines adopted a preventive approach. The findings of this study add to the knowledge of salinity response in woody and grafted plants and hence open the scope for further studies on salt stress-specific differences induced by grafting.


Assuntos
Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Estresse Salino , Vitis/metabolismo , Cromatografia Líquida/métodos , Regulação da Expressão Gênica de Plantas/fisiologia , Ontologia Genética , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/fisiologia , Raízes de Plantas/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Salinidade , Estresse Salino/fisiologia , Cloreto de Sódio/efeitos adversos , Espectrometria de Massas em Tandem/métodos , Vitis/efeitos adversos , Vitis/fisiologia
7.
Plant Physiol Biochem ; 129: 168-179, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29885601

RESUMO

Among the different abiotic stresses, salt stress has a significant effect on the growth and yield of grapevine (Vitis vinifera L.). In this study, we employed RNA sequence based transcriptome analysis to study salinity stress response in grape variety Thompson Seedless. Salt stress adversely affected the growth related and physiological parameters and the effect on physiological parameters was significant within 10 days of stress imposition. A total of 343 genes were differentially expressed in response to salt stress. Among the differentially expressed genes (DEGs) only 42 genes were common at early and late stages of stress. The gene enrichment analysis revealed that GO terms related to transcription factors were over-represented. Among the DEGs, 52 were transcription factors belonging to WRKY, EREB, MYB, NAC and bHLH families. Salt stress significantly affected several pathways like metabolic pathways, biosynthesis of secondary metabolites, membrane transport development related pathways etc. 343 DEGs were distributed on all the 19 chromosomes, however clustered regions of DEGs were present on chromosomes 2, 5, 6 and 12 suggesting probable QTLs for imparting tolerance to salt and other abiotic stresses. Real-time PCR of selected genes in control and treated samples of grafted and own root vines demonstrated that rootstock influenced expression of salt stress responsive genes. Microsatellite regions were identified in ten selected salt responsive genes and highly polymorphic markers were identified using fifteen grape genotypes. This information will be useful for the identification of key genes involved in salt stress tolerance in grape. The identified DEGs could also be useful for genome wide analysis for the identification of polymorphic markers for their subsequent use in molecular breeding for developing salt tolerant grape genotypes.


Assuntos
Folhas de Planta/fisiologia , Vitis/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/fisiologia , Repetições de Microssatélites , Folhas de Planta/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Estresse Salino , Fatores de Tempo , Vitis/metabolismo
8.
Funct Integr Genomics ; 18(4): 439-455, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29626310

RESUMO

In grapes (Vitis vinifera L.), exogenous gibberellic acid (GA3) is applied at different stages of bunch development to achieve desirable bunch shape and berry size in seedless grapes used for table purpose. RNA sequence-based transcriptome analysis was used to understand the mechanism of GA3 action at cluster emergence, full bloom, and berry stage in table grape variety Thompson Seedless. At cluster emergence, rachis samples were collected at 6 and 24 h after application of GA3, whereas flower clusters and berry samples were collected at 6, 24, and 48 h after application at full bloom and 3-4 mm berry stages. Seven hundred thirty-three genes were differentially expressed in GA3-treated samples. At rachis and flower cluster stage respectively, 126 and 264 genes were found to be significantly differentially expressed within 6 h of GA3 application. The number of DEG reduced considerably at 24 h. However, at berry stage, major changes occurred even at 24 h and a number of DEGs at 6 and 24 h were 174 and 191, respectively. As compared to upregulated genes, larger numbers of genes were downregulated. Stage-specific response to the GA3 application was observed as evident from the unique set of DEGs at each stage and only a few common genes among three stages. Among the DEGs, 67 were transcription factors. Functional categorization and enrichment analysis revealed that several transcripts involved in sucrose and hexose metabolism, hormone and secondary metabolism, and abiotic and biotic stimuli were enriched in response to application of GA3. A high correlation was recorded for real-time PCR and transcriptome data for selected DEGs, thus indicating the robustness of transcriptome data obtained in this study for understanding the GA3 response at different stages of berry development in grape. Chromosomal localization of DEGs and identification of polymorphic microsatellite markers in selected genes have potential for their use in breeding for varieties with improved bunch architecture.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Giberelinas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Transcriptoma , Vitis/genética , Flores/efeitos dos fármacos , Flores/genética , Flores/crescimento & desenvolvimento , Frutas/efeitos dos fármacos , Frutas/genética , Frutas/crescimento & desenvolvimento , Desenvolvimento Vegetal/efeitos dos fármacos , Desenvolvimento Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vitis/efeitos dos fármacos , Vitis/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...