Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Phytomedicine ; 132: 155508, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38901286

RESUMO

BACKGROUND: Photodamage to the skin stands out as one of the most widespread epidermal challenges globally. Prolonged exposure to sunlight containing ultraviolet radiation (UVR) instigates stress, thereby compromising the skin's functionality and culminating in photoaging. Recent investigations have shed light on the importance of autophagy in shielding the skin from photodamage. Despite the acknowledgment of numerous phytochemicals possessing photoprotective attributes, their potential to induce autophagy remains relatively unexplored. PURPOSE: Diminished autophagy activity in photoaged skin underscores the potential benefits of restoring autophagy through natural compounds to enhance photoprotection. Consequently, this study aims to highlight the role of natural compounds in safeguarding against photodamage and to assess their potential to induce autophagy via an in-silico approach. METHODS: A thorough search of the literature was done using several databases, including PUBMED, Science Direct, and Google Scholar, to gather relevant studies. Several keywords such as Phytochemical, Photoprotection, mTOR, Ultraviolet Radiation, Reactive oxygen species, Photoaging, and Autophagy were utilized to ensure thorough exploration. To assess the autophagy potential of phytochemicals through virtual screening, computational methodologies such as molecular docking were employed, utilizing tools like AutoDock Vina. Receptor preparation for docking was facilitated using MGLTools. RESULTS: The initiation of structural and functional deterioration in the skin due to ultraviolet radiation (UVR) or sunlight-induced reactive oxygen species/reactive nitrogen species (ROS/RNS) involves the modulation of various pathways. Natural compounds like phenolics, flavonoids, flavones, and anthocyanins, among others, possess chromophores capable of absorbing light, thereby offering photoprotection by modulating these pathways. In our molecular docking study, these phytochemicals have shown binding affinity with mTOR, a negative regulator of autophagy, indicating their potential as autophagy modulators. CONCLUSION: This integrated review underscores the photoprotective characteristics of natural compounds, while the in-silico analysis reveals their potential to modulate autophagy, which could significantly contribute to their anti-photoaging properties. The findings of this study hold promise for the advancement of cosmeceuticals and therapeutics containing natural compounds aimed at addressing photoaging and various skin-related diseases. By leveraging their dual benefits of photoprotection and autophagy modulation, these natural compounds offer a multifaceted approach to combatting skin aging and related conditions.

2.
Pharmacogenomics ; : 1-16, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38884942

RESUMO

Aim: The study aims to identify high-impact single nucleotide polymorphisms (SNPs) in miRNA target sites of genes associated with lung cancer. Materials & methods: Lung cancer genes were obtained from Uniprot KB. miRNA target site SNPs were mined from MirSNP, miRdSNP and TargetScan. SNPs were shortlisted based on binding impact, minor allele frequency and conservation. Gene expression was analyzed in genes with high-impact SNPs in healthy versus lung cancer tissue. Additionally, enrichment, pathway and network analyzes were performed. Results: 19 high-impact SNPs were identified in miRNA target sites of lung cancer-associated genes. These SNPs affect miRNA binding and gene expression. The genes are involved in key cancer related pathways. Conclusion: The identified high-impact miRNA target site SNPs and associated genes provide a starting point for case-control studies in lung cancer patients in different populations.


[Box: see text].

3.
J Biomol Struct Dyn ; : 1-13, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37615411

RESUMO

Prostate cancer is the second most dangerous cancer type worldwide. While various treatment options are present i.e. agonists and antagonists, their utilization leads to adverse effects and due to this resistance developing, ultimately the outcome is remission. So, to overcome this issue, we have undertaken an in-silico investigation to identify promising and unique flavonoid candidates for combating prostate cancer. Using GOLD software, the study assessed the effectiveness of 560 natural secondary polyphenols against CDKN2. Protein Data Bank was used to retrieve the 3D crystal structure of CDKN2 (PDB Id: 4EK3) and we retrieved the structure of selected secondary polyphenols from the PubChem database. The compound Diosmetin shows the highest GOLD score with the selected Protein i.e. CDKN2 which is 58.72. To better understand the 2-dimensional and 3-dimensional interactions, the interacting amino acid residues were visualised using Discovery Studio 3.5 and Maestro 13.5. Using Schrodinger-Glide, the Diosmetin and CDKN2 were re-docked, and decoy ligands were docked to CDKN2, which was used to further ascertain the study. The ligands with the highest Gold score were forecasted for pharmacokinetics characteristics, and the results were tabulated and analysed. Utilising the Gromacs software and Desmond packages, 100 ns of Diosmetin molecular dynamics simulations were run to evaluate the structural persistence and variations of protein-ligand complexes. Additionally, our investigation revealed that Diosmetin had a better binding affinity with CDKN2 measuring 58.72, and it also showed remarkable stability across a 100-ns simulation. Thus, following in-vitro and in-vivo clinical studies, diosmetin might lead to the Prostate regimen.Communicated by Ramaswamy H. Sarma.

4.
J Biomol Struct Dyn ; : 1-15, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37534497

RESUMO

Aldo-keto reductase 1C3 (AKR1C3) is a monomeric enzyme expressed in steroidogenic tissues such as the testis, prostate, uterus, and breast. Overexpression of this AKR1C3 is associated with vast cancers such as breast, colon, colorectal, endometrial, prostate, and acute myeloid leukaemia. Regarding the treatment of castration-resistant prostate cancer, breast cancer, and acute myeloid leukaemia, AKR1C3 inhibitors may offer clear advantages over currently available therapies. Thus, discovering novel and specific AKR1C3 inhibitors is a promising way to obstruct drug resistance in cancer. Derivatives of alpha-tocopherol and alpha-tocopheroids were selected as possible therapeutics to act as AKR1C3 inhibitors. The precise targets of several ligands were determined using computational screening methods. The molecular structure of AKR1C3 and its ligands were used as the foundation for in silico predictions, modelling, and dynamic simulations. Compounds were selected based on their biological properties and filtered according to their ADMET and drug-likeness properties. Additionally, simulations of all-atom molecular dynamics on AKR1C3 with the cleared compounds revealed stability over the simulated trajectories of 100 ns. When seen collectively, alpha-tocospiro A may be considered prospective AKR1C3 inhibitors for creating anticancer therapies.Communicated by Ramaswamy H. Sarma.

5.
Front Microbiol ; 14: 1170740, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37405156

RESUMO

A novel laboratory model was designed to study the arsenic (As) biotransformation potential of the microalgae Chlorella vulgaris and Nannochloropsis sp. and the cyanobacterium Anabaena doliolum. The Algae were treated under different concentrations of As(III) to check their growth, toxicity optimization, and volatilization potential. The results revealed that the alga Nannochloropsis sp. was better adopted in term of growth rate and biomass than C. vulgaris and A. doliolum. Algae grown under an As(III) environment can tolerate up to 200 µM As(III) with moderate toxicity impact. Further, the present study revealed the biotransformation capacity of the algae A. doliolum, Nannochloropsis sp., and Chlorella vulgaris. The microalga Nannochloropsis sp. volatilized a large maximum amount of As (4,393 ng), followed by C. vulgaris (4382.75 ng) and A. doliolum (2687.21 ng) after 21 days. The present study showed that As(III) stressed algae-conferred resistance and provided tolerance through high production of glutathione content and As-GSH chemistry inside cells. Thus, the biotransformation potential of algae may contribute to As reduction, biogeochemistry, and detoxification at a large scale.

6.
Heliyon ; 9(4): e14727, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37025819

RESUMO

Kinema is a traditional food prepared by the natural fermentation of cooked soybeans. The fermented Kinema is known to have several bioactive constituents, however, only limited reports on the effect of fermentation time on the bioactivity of Kinema are available. Therefore, in this work, changes in phenolics content and radical scavenging activity of Kinema at different fermentation times were explored. Furthermore, the optimum fermentation time for maximum bioactivities (total phenolic content, total flavonoid content, and DPPH radical scavenging activity) was determined using one-factor response surface methodology. The numerical optimization suggested an optimum fermentation time of 29.6 h with significantly higher total phenolics and flavonoid contents of 62.84 ± 0.89 mg GAEs/g dry extract, 45.41 ± 0.57 mg QEs/g dry extract, respectively (p < 0.05) compared to traditionally fermented Kinema. Similarly, the IC50 concentration for DPPH radical scavenging activity of 1.78 ± 0.01 mg dry extract/mL, was significantly lower than those for traditionally prepared Kinema (p < 0.05). Moreover, optimized Kinema had significantly higher overall sensory scores compared to the traditional sample. The results suggested that fermentation time affects the amount of bioactive constituents of Kinema. Further studies are needed to explore the changes in the type of phenolic and flavonoid compounds.

7.
IUBMB Life ; 75(3): 238-256, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35678612

RESUMO

Cancer is a leading cause of death globally, with about 19.3 million new cases reported each year. Current therapies for cancer management include-chemotherapy, radiotherapy, and surgery. However, they are loaded with side effects and tend to cause toxicity in the patient's body posttreatment, ultimately hindering the response towards the treatment building up resistance. This is where noncoding RNAs such as miRNAs help provide us with a helping hand for taming the chemoresistance and providing potential holistic cancer management. MicroRNAs are promising targets for anticancer therapy as they perform critical regulatory roles in various signaling cascades related to cell proliferation, apoptosis, migration, and invasion. Combining miRNAs and anticancer drugs and devising a combination therapy has managed cancer well in various independent studies. This review aims to provide insights into how miRNAs play a mechanistic role in cancer development and progression and regulate drug resistance in various types of cancers. Furthermore, next-generation novel therapies using miRNAs in combination with anticancer treatments in multiple cancers have been put forth and how they improve the efficacy of the treatments. Exemplary studies currently in the preclinical and clinical models have been summarized. Ultimately, we briefly talk through the challenges that come forward with it and minimize them.


Assuntos
Antineoplásicos , MicroRNAs , Neoplasias , Humanos , MicroRNAs/metabolismo , Resistencia a Medicamentos Antineoplásicos , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Transdução de Sinais
8.
J Genet Eng Biotechnol ; 20(1): 140, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175808

RESUMO

BACKGROUND: Candida tropicalis causes tropical invasive fungal infections, with a high mortality. This fungus has been found to be resistant to antifungal classes such as azoles, echinocandins, and polyenes in several studies. As a result, it is vital to identify novel approaches to prevent and treat C. tropicalis infections. In this study, an in silico technique was utilized to deduce and evaluate a powerful multivalent epitope-based vaccine against C. tropicalis, which targets the secreted aspartic protease 2 (SAP2) protein. This protein is implicated in virulence and host invasion. RESULTS: By focusing on the Sap2 protein, 11 highly antigenic, non-allergic, non-toxic, and conserved epitopes were identified. These were subsequently paired with RS09 and flagellin adjuvants, as well as a pan HLA DR-binding epitope (PADRE) sequence to create a vaccine candidate that elicited both cell-mediated and humoral immune responses. It was projected that the vaccine design would be soluble, stable, antigenic, and non-allergic. Ramachandran plot analysis was applied to validate the vaccine construct's 3-dimensional model. The vaccine construct was tested (at 100 ns) using molecular docking and molecular dynamics simulations, which demonstrated that it can stably connect with MHC-I and Toll-like receptor molecules. Based on in silico studies, we have shown that the vaccine construct can be expressed in E. coli. We surmise that the vaccine design is unrelated to any human proteins, indicating that it is safe to use. CONCLUSIONS: The vaccine design looks to be an effective option for preventing C. tropicalis infections, based on the outcomes of the studies. A fungal vaccine can be proposed as prophylactic medicine and could provide initial protection as sometimes diagnosis of infection could be challenging. However, more in vitro and in vivo research is needed to prove the efficacy and safety of the proposed vaccine design.

9.
Molecules ; 27(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35566099

RESUMO

Objective: The present study aimed to develop and optimize esomeprazole loaded proniosomes (EZL-PNs) to improve bioavailability and therapeutic efficacy. Method: EZL-PNs formulation was developed by slurry method and optimized by 33 box-Bhekhen statistical design software. Span 60 (surfactant), cholesterol, EZL concentration were taken as independent variables and their effects were evaluated on vesicle size (nm), entrapment efficiency (%, EE) and drug release (%, DR). Furthermore, optimized EZL-PNs (EZL-PNs-opt) formulation was evaluated for ex vivo permeation, pharmacokinetic and ulcer protection activity. Result: The EZL-PNs-opt formulation showed 616 ± 13.21 nm of vesicle size, and 81.21 ± 2.35% of EE. EZL-PNs-opt exhibited negative zeta potential and spherical confirmed scanning electron microscopy. EZL-PNs-opt showed sustained release of EZL (95.07 ± 2.10% in 12 h) than pure EZL dispersion. The ex-vivo gut permeation result exhibited a significantly (p < 0.05) enhanced flux than pure EZL. The in vivo results revealed 4.02-fold enhancement in bioavailability and 61.65% protection in ulcer than pure EZL dispersion (43.82%). Conclusion: Our findings revealed that EZL-PNs formulation could be an alternative delivery system of EZL to enhance oral bioavailability and antiulcer activity.


Assuntos
Esomeprazol , Úlcera , Administração Cutânea , Disponibilidade Biológica , Portadores de Fármacos , Liberação Controlada de Fármacos , Esomeprazol/farmacologia , Humanos , Tamanho da Partícula
10.
Amino Acids ; 54(3): 411-419, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35192061

RESUMO

Profilin protein is present ubiquitously in all forms of life and is allied with allergic responses among atopic individuals. In addition to this, profilins from various food sources are also associated with IgE cross-reactivity and are thus classified as pan-allergens. The present study unravels the physicochemical basis of differential amino acid usage patterns observed in the profilin gene family. Correspondence analysis based on amino acid usage of allergen and non-allergen profilins revealed discrete clusters among them, signifying differential patterns of amino acid usage. The amino acids, namely methionine, proline, histidine, glutamine, glutamic acid, tryptophan and glycine were found to be more frequently utilised by the allergen profilins compared to the non-allergens. Correlation analysis revealed that physicochemical features like protein disorder, trypsin digestion and solubility differed significantly among the allergen and non-allergen profilins, thus supporting the observations from correspondence analysis. In addition, comprehensive sequence analysis revealed that the allergen profilins possess conserved motifs which may correlate with their distinct physicochemical features. An in-depth structural analysis revealed that the over-represented amino acids in allergen profilins have a propensity of being exposed on the surface, which may be attributed to their distinct allergenic characteristics. The distinguished physicochemical features observed among allergens and non-allergens can be employed as descriptors to develop machine learning-based allergenicity prediction models.


Assuntos
Aminoácidos , Profilinas , Alérgenos/genética , Sequência de Aminoácidos , Humanos , Imunoglobulina E/metabolismo , Proteínas de Plantas/metabolismo , Profilinas/genética , Profilinas/metabolismo
11.
BioTechnologia (Pozn) ; 103(1): 53-70, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36605381

RESUMO

Coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected 235.6 million people worldwide. In the present study, RNA-dependent RNA polymerase (RdRp) (PDB Id: 6M71) of SARS-CoV-2, an essential enzyme needed for subgenomic replication and amplification of RNA, was selected. Similar to other RdRps, it is a conserved protein and a popular target for antiviral drug therapy. Based on a computational approach, potential RdRp inhibitors were identified. The absorption, distribution, metabolism, excretion, and toxicity (ADMET) of selected molecules were determined using computation tools. The potential inhibitors were docked to the RdRp and later confirmed by Molecular Dynamics (MD) using the "Flare" module of Cresset software. Drummondin E and Flinderole B had higher drug similarity scores among the compounds selected in this study. Both these compounds are noncarcinogenic, nonirritant, nontumorigenic, and nonmutagenic. Molecular docking studies showed that both compounds can bind to RdRp. The best ligand interaction patterns were validated by MD using the "Flare" module. MD was performed for the period of 100 ns with the time step of 1 fs. The simulation results suggest that Thr-680, Arg-624, Lys-676, and Val-557 are key interacting partners in the Drummondin E-RdRp complex, while Asp-618, Asp-760, Asp-623, Arg-624, and Asp-761 are the interacting partners in the Flinderole B-RdRp complex. Based on the in silico drug-likeness score; ADMET properties; and molecular simulation result, we surmise that Flinderole B and Drummondin E could impede SARS-CoV-2 genome replication and transcription by targeting the RdRp protein.

12.
Bull Environ Contam Toxicol ; 108(3): 500-506, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32930810

RESUMO

Ubiquitous distribution, fast growth rate and manifold relevance has credited algae a potential bioresource in current state of affairs of environmental degradation. In the present study, green alga Chlorococcum sp. has been collected from waste water, isolated and cultured to assess their accumulation and toxicity responses at different As(III) concentration. Results revealed that Chlorococcum sp. treated with 10 µM As(III) showed a minimal reduction (21%) in chlorophyll concentration with high proline and carotenoids content indicating its adaptive tolerance potential against As(III). The EC50 of As(III) for inhibiting growth of the microalgae after 10 days of experiment was 9.4 µM. Further, Chlorococcum sp. accumulated 239.09 µg g- 1 dw As at the concentration of 10 µM of As(III) after 10 days of treatment. Concentration dependent accumulation pattern and antioxidant responses in Chlorococcum sp. could be a used as a potential bioindicator and bioremediator of As from waste water.


Assuntos
Microalgas , Bioacumulação , Biodegradação Ambiental , Microalgas/metabolismo , Águas Residuárias
13.
Curr Pharm Biotechnol ; 23(9): 1132-1141, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34387162

RESUMO

BACKGROUND: Pinus belongs to the family Pinaceae, represented by several species across the globe. Various parts of the plant including needles are rich in biologically active compounds, such as thunbergol, 3-carene, cembrene, α-pinene, quercetin, xanthone. Of all the alkaloids, the piperidine group is one of the important component and holds considerable medicinal importance. METHODS: The group of alkaloids was initially identified from the genus Piper through which a large variety of piperidine molecules have been extracted. The planar structure of this heterocyclic nucleus enables acetamide groups to be added at various ring configurations. RESULTS: Piperidines have gained considerable importance. The broad range of its therapeutic application has paved a way for researchers to implant the nucleus from time to time in diversified pharmacophores and establish new profile. DISCUSSION: Biological functions of piperidine metabolites have been mostly examined on a limited scale, and that most of the findings are preliminary. We have tried to present various clinical applications of piperidine alkaloids in this study that researchers have already attempted to demystify with time. CONCLUSION: We have also illustrated different types of piperidine structures and their sources in different members of the family Pinaceae with special emphasis on Pinus. Given the importance of the piperidine nucleus, the study will enable the researchers to produce scaffolds of highest therapeutic efficacy.


Assuntos
Alcaloides , Pinus , Alcaloides/química , Alcaloides/farmacologia , Pinus/química , Piperidinas/química , Piperidinas/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-34900515

RESUMO

Orthohantavirus, a zoonotic virus responsible for causing human cardio-pulmonary disease, is proven to be a fatal disease. Due to the paucity of regimens to cure the disease and efficient management to eradicate this deadly virus, there is a constant need to expand in-silico approaches belonging to immunology domain to formulate best feasible peptide-based vaccine against it. In lieu of that, we have predicted and validated an epitope of nine-residue-long sequence "MIGLLSSRI". The predicted epitope has shown best interactions with HLA alleles of MHC Class II proteins, namely HLA DRB1_0101, DRB1_0401, DRB1_0405, DRB1_0701, DRB1_0901, DRB1_1302, and DRB1_1501. The structure of the epitope was modeled by deploying PEPFOLD 3.5 and verified by Ramachandran plot analysis. Molecular docking and simulation studies reveal that this epitope has satisfactory binding scores, ACE value and global energies for docked complexes along with selectable range of RMSD and RMSF values. Also, the predicted epitope "MIGLLSSRI" exhibits population coverage of more than 62% in world population and maximum of 70% in the United States of America. In this intensive study, we have used many tools like AllergenFP, NETMHCII 3.2, VaxiJen, ToxinPred, PEPFOLD 3.5, DINC, IEDB-Population coverage, MHCPred and JCat server. Most of these tools are based on modern innovative statistical algorithms like HMM, ANN, ML, etc. that help in better predictions of putative candidates for vaccine crafting. This innovative methodology is facile, cost-effective and time-efficient, which could facilitate designing of a vaccine against this virus.

15.
3 Biotech ; 11(2): 93, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33520579

RESUMO

COVID-19 has emerged as a rapidly escalating serious global health issue, affecting every section of population in a detrimental way. Present situation invigorated researchers to look for potent targets, development as well as repurposing of conventional therapeutic drugs. NSP12, a RNA polymerase, is key player in viral RNA replication and, hence, viral multiplication. In our study, we have screened a battery of FDA-approved drugs against SARS-CoV-2 RNA polymerase using in silico molecular docking approach. Identification of potent inhibitors against SARS-CoV-2 NSP12 (RNA polymerase) were screeened from FDA approved drugs by virtual screening for therapeutic applications in treatment of COVID-19. In this study, virtual screening of 1749 antiviral drugs was executed using AutoDock Vina in PyRx software. Binding affinities between NSP12 and drug molecules were determined using Ligplot+ and PyMOL was used for visualization of docking between interacting residues. Screening of 1749 compounds resulted in 14 compounds that rendered high binding affinity for NSP12 target molecule. Out of 14 compounds, 5 compounds which include 3a (Paritaprevir), 3d (Glecaprevir), 3h (Velpatasvir), 3j (Remdesivir) and 3l (Ribavirin) had a binding affinity of - 10.2 kcal/mol, -9.6 kcal/mol, - 8.5 kcal/mol, - 8.0 kcal/mol and - 6.8 kcal/mol, respectively. Moreover, a number of hydrophobic interactions and hydrogen bonding between these 5 compounds and NSP12 active site were observed. Further, 3l (Ribavirin) was docked with 6M71 and molecular dynamic simulation of the complex was also performed to check the stability of the conformation. In silico analysis postulated the potential of conventional antiviral drugs in treatment of COVID-19. However, these finding may be further supported by experimental data for its possible clinical application in present scenario.

16.
MethodsX ; 7: 101053, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33024710

RESUMO

This protocol describes a stepwise process to identify proteins of interest from a query proteome derived from NGS data. We implemented this protocol on Moringa oleifera transcriptome to identify proteins involved in secondary metabolite and vitamin biosynthesis and ion transport. This knowledge-driven protocol identifies proteins using an integrated approach involving sensitive sequence search and evolutionary relationships. We make use of functionally important residues (FIR) specific for the query protein family identified through its homologous sequences and literature. We screen protein hits based on the clustering with true homologues through phylogenetic tree reconstruction complemented with the FIR mapping. The protocol was validated for the protein hits through qRT-PCR and transcriptome quantification. Our protocol demonstrated a higher specificity as compared to other methods, particularly in distinguishing cross-family hits. This protocol was effective in transcriptome data analysis of M. oleifera as described in Pasha et al.•Knowledge-driven protocol to identify secondary metabolite synthesizing protein in a highly specific manner.•Use of functionally important residues for screening of true hits.•Beneficial for metabolite pathway reconstruction in any (species, metagenomics) NGS data.

17.
Data Brief ; 30: 105416, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32309524

RESUMO

In this paper, we present the data acquired during transcriptome analysis of the plant Moringa oleifera [1] from five different tissues (root, stem, leaf, flower and seed) by RNA sequencing. A total of 271 million reads were assembled with an N50 of 2094 bp. The combined transcriptome was assessed for transcript abundance across five tissues. The protein coding genes identified from the transcripts were annotated and used for orthology analysis. Further, enzymes involved in the biosynthesis of select medicinally important secondary metabolites, vitamins and ion transporters were identified and their expression levels across tissues were examined. The data generated by RNA sequencing has been deposited to NCBI public repository under the accession number PRJNA394193 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA394193).

18.
Genomics ; 112(1): 621-628, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31048014

RESUMO

Moringa oleifera is a plant well-known for its nutrition value, drought resistance and medicinal properties. cDNA libraries from five different tissues (leaf, root, stem, seed and flower) of M. oleifera cultivar Bhagya were generated and sequenced. We developed a bioinformatics pipeline to assemble transcriptome, along with the previously published M. oleifera genome, to predict 17,148 gene models. Few candidate genes related to biosynthesis of secondary metabolites, vitamins and ion transporters were identified. Expressions were further confirmed by real-time quantitative PCR experiments for few promising leads. Quantitative estimation of metabolites, as well as elemental analysis, was also carried out to support our observations. Enzymes in the biosynthesis of vitamins and metabolites like quercetin and kaempferol are highly expressed in leaves, flowers and seeds. The expression of iron transporters and calcium storage proteins were observed in root and leaves. In general, leaves retain the highest amount of small molecules of interest.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/fisiologia , Moringa oleifera , Metabolismo Secundário/fisiologia , Transcriptoma/fisiologia , Biblioteca Gênica , Moringa oleifera/genética , Moringa oleifera/metabolismo
19.
Nutrients ; 11(12)2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31817203

RESUMO

The World Health Organization recommends feeding snacks between meals to young children. This study explored nutritional quality of snacks consumed between meals and consumption metrics (% total energy intakes (%TEI) and amount of kcal from snacks) to understand correlations with dietary outcomes (total energy intakes and dietary adequacy) and body-mass-index-for-age z-scores (BMIZ). Data used were 24-h dietary recalls and anthropometric measurements among a representative sample (n = 679) of one-year-olds in Nepal. Nepali meal patterns for young children were identified through formative research and all foods/beverages consumed outside of meals were categorized as snacks. A nutrient profiling model was used to categorize snacks as healthy or unhealthy, based on positive and negative nutrient content. Snacks consumed between meals provided half of all energy consumed, and were associated with increased energy and nutrient intakes. The positive effect of snacks between meals on dietary adequacy was greater when these snacks were healthy, while increasing %TEI from unhealthy snacks consumed between meals was negatively associated with dietary adequacy. Consumption of snacks between meals was not associated with mean BMIZ among the children. These findings indicate that the provision of and nutritional quality of snacks are important considerations to communicate to caregivers. Discouragement of unhealthy, nutrient-poor snacks is critical for complementary feeding dietary guidelines in contexts experiencing nutrition transition.


Assuntos
Inquéritos sobre Dietas , Dieta/estatística & dados numéricos , Fenômenos Fisiológicos da Nutrição do Lactente/fisiologia , Valor Nutritivo/fisiologia , Lanches/fisiologia , Estudos Transversais , Feminino , Humanos , Lactente , Masculino , Nepal/epidemiologia
20.
BMC Genomics ; 20(1): 989, 2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31847812

RESUMO

BACKGROUND: Studying plasticity in gene expression in natural systems is crucial, for predicting and managing the effects of climate change on plant species. To understand the contribution of gene expression level variations to abiotic stress compensation in a Himalaya plant (Primula sikkimensis), we carried out a transplant experiment within (Ambient), and beyond (Below Ambient and Above Ambient) the altitudinal range limit of species. We sequenced nine transcriptomes (three each from each altitudinal range condition) using Illumina sequencing technology. We compared the fitness variation of transplants among three transplant conditions. RESULTS: A large number of significantly differentially expressed genes (DEGs) between below ambient versus ambient (109) and above ambient versus ambient (85) were identified. Transcripts involved in plant growth and development were mostly up-regulated in below ambient conditions. Transcripts involved in signalling, defence, and membrane transport were mostly up-regulated in above ambient condition. Pathway analysis revealed that most of the genes involved in metabolic processes, secondary metabolism, and flavonoid biosynthesis were differentially expressed in below ambient conditions, whereas most of the genes involved in photosynthesis and plant hormone signalling were differentially expressed in above ambient conditions. In addition, we observed higher reproductive fitness in transplant individuals at below ambient condition compared to above ambient conditions; contrary to what we expect from the cold adaptive P. sikkimensis plants. CONCLUSIONS: We reveal P. sikkimensis's capacity for rapid adaptation to climate change through transcriptome variation, which may facilitate the phenotypic plasticity observed in morphological and life history traits. The genes and pathways identified provide a genetic resource for understanding the temperature stress (both the hot and cold stress) tolerance mechanism of P. sikkimensis in their natural environment.


Assuntos
Altitude , Regulação da Expressão Gênica de Plantas , Primula/genética , Perfilação da Expressão Gênica , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Primula/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...