Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gut ; 65(10): 1744-53, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26149491

RESUMO

OBJECTIVE: HCV infection affects millions of people worldwide, and many patients develop chronic infection leading to liver cancers. For decades, the lack of a small animal model that can recapitulate HCV infection, its immunopathogenesis and disease progression has impeded the development of an effective vaccine and therapeutics. We aim to provide a humanised mouse model for the understanding of HCV-specific human immune responses and HCV-associated disease pathologies. DESIGN: Recently, we have established human liver cells with a matched human immune system in NOD-scid Il2rg(-/-) (NSG) mice (HIL mice). These mice are infected with HCV by intravenous injection, and the pathologies are investigated. RESULTS: In this study, we demonstrate that HIL mouse is capable of supporting HCV infection and can present some of the clinical symptoms found in HCV-infected patients including hepatitis, robust virus-specific human immune cell and cytokine responses as well as liver fibrosis and cirrhosis. Similar to results obtained from the analysis of patient samples, the human immune cells, particularly T cells and macrophages, play critical roles during the HCV-associated liver disease development in the HIL mice. Furthermore, our model is demonstrated to be able to reproduce the therapeutic effects of human interferon alpha 2a antiviral treatment. CONCLUSIONS: The HIL mouse provides a model for the understanding of HCV-specific human immune responses and HCV-associated disease pathologies. It could also serve as a platform for antifibrosis and immune-modulatory drug testing.


Assuntos
Modelos Animais de Doenças , Hepatite C Crônica , Interferon-alfa/uso terapêutico , Camundongos Endogâmicos NOD , Animais , Antivirais/uso terapêutico , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/imunologia , Hepatite C Crônica/fisiopatologia , Humanos , Imunidade Celular/imunologia , Interferon alfa-2 , Camundongos , Proteínas Recombinantes/uso terapêutico , Reprodutibilidade dos Testes
2.
World J Gastroenterol ; 20(11): 2913-26, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24659882

RESUMO

The current therapeutic regimen to combat chronic hepatitis C is not optimal due to substantial side effects and the failure of a significant proportion of patients to achieve a sustained virological response. Recently developed direct-acting antivirals targeting hepatitis C virus (HCV) enzymes reportedly increase the virologic response to therapy but may lead to a selection of drug-resistant variants. Besides direct-acting antivirals, another promising class of HCV drugs in development include host targeting agents that are responsible for interfering with the host factors crucial for the viral life cycle. A family of host proteins known as DEAD-box RNA helicases, characterized by nine conserved motifs, is known to play an important role in RNA metabolism. Several members of this family such as DDX3, DDX5 and DDX6 have been shown to play a role in HCV replication and this review will summarize our current knowledge on their interaction with HCV. As chronic hepatitis C is one of the leading causes of hepatocellular carcinoma, the involvement of DEAD-box RNA helicases in the development of HCC will also be highlighted. Continuing research on the interaction of host DEAD-box proteins with HCV and the contribution to viral replication and pathogenesis could be the panacea for the development of novel therapeutics against HCV.


Assuntos
RNA Helicases DEAD-box/metabolismo , Hepacivirus/fisiologia , Hepatite C/enzimologia , Animais , Antivirais/uso terapêutico , Carcinoma Hepatocelular/etiologia , Genoma Viral , Hepatite C/tratamento farmacológico , Interações Hospedeiro-Patógeno , Humanos , Neoplasias Hepáticas/etiologia , Proteínas Virais/metabolismo
3.
PLoS One ; 7(7): e40341, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22815741

RESUMO

Nearly 200 million people are infected by hepatitis C virus (HCV) worldwide. For replicating the HCV genome, the membrane-associated machinery needs to be formed by both HCV non-structural proteins (including NS5B) and human host factors such as VAPB. Recently, the 99-residue VAPC, a splicing variant of VAPB, was demonstrated to inhibit HCV replication via binding to NS5B, thus acting as an endogenous inhibitor of HCV infection. So far, the structure of VAPC remains unknown, and its interaction with NS5B has not been biophysically characterized. In this study, we conducted extensive CD and NMR investigations on VAPC which led to several striking findings: 1) although the N-terminal 70 residues are identical in VAPC and VAPB, they constitute the characteristic ß-barrel MSP fold in VAPB, while VAPC is entirely unstructured in solution, only with helical-like conformations weakly populated. 2) VAPC is indeed capable of binding to NS5B, with an average dissociation constant (Kd) of ∼20 µM. Intriguingly, VAPC remains dynamic even in the complex, suggesting that the VAPC-NS5B is a "fuzzy complex". 3) NMR mapping revealed that the major binding region for NS5B is located over the C-terminal half of VAPC, which is composed of three discrete clusters, of which only the first contains the region identical in VAPC and VAPB. The second region containing ∼12 residues appears to play a key role in binding since mutation of 4 residues within this region leads to almost complete loss of the binding activity. 4) A 14-residue mimetic, VAPC-14 containing the second region, only has a ∼3-fold reduction of the affinity. Our study not only provides critical insights into how a human factor mediates the formation of the HCV replication machinery, but also leads to design of VAPC-14 which may be further used to explore the function of VAPC and to develop anti-HCV molecules.


Assuntos
Hepacivirus/efeitos dos fármacos , Hepacivirus/fisiologia , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Humanos , Dados de Sequência Molecular , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas de Transporte Vesicular/farmacologia , Proteínas não Estruturais Virais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...