Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Genet Metab Rep ; 27: 100747, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33854947

RESUMO

Mucolipidosis type II (MLII, MIM 252500) is a lysosomal storage disorders caused by defects in GNPTAB gene which encodes alpha and beta subunits of N-acetylglucosamine (GlcNAc)-1-phosphotransferase. Neonatal presentation includes coarse facial features, restricted postnatal growth, generalized hypotonia, gingival hypertrophy and multiple skeletal anomalies. Here we present a case of a 26-week gestational age preterm infant with MLII who did not exhibit the typical facial features at birth; however, the diagnosis was suggested from abnormal placental pathology showing trophoblastic lipidosis and initial skeletal abnormalities from chest radiograph revealing generalized diffuse severe bone demineralizing disease and multiple fractures. Biochemical testing revealed elevation of plasma lysosomal enzymes. Homozygous pathogenic variant, designated c.3505_3504del, was discovered from GNPTAB sequencing. Her course was complicated by respiratory distress, secondary hyperparathyroidism, abdominal distention and feeding difficulties. Urine mucopolysaccharides analysis revealed mild elevation of total and individual glycosaminoglycan species in a non-specific pattern. To our knowledge, our case is the most premature example of mucolipidosis type II that has ever been reported to date. This report highlights the importance of placental pathological studies in the diagnosis of lysosomal storage disorders.

2.
Am J Bot ; 108(1): 129-144, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33528044

RESUMO

PREMISE: Fossils can reveal long-vanished characters that inform inferences about the timing and patterns of diversification of living fungi. Through analyzing well-preserved fossil scutella, shield-like covers of fungal sporocarps, we describe a new taxon of early Dothideomycetes with a combination of characters unknown among extant taxa. METHODS: Macerated clays from the Potomac Group, lower Zone 1, from the Lower Cretaceous (Aptian, 125-113 Ma) of Virginia USA yielded one gymnospermous leaf cuticle colonized by 21 sporocarps of a single fungal morphotype. We inferred a tree from nuclear ribosomal DNA of extant species, and coded morphological characters to evaluate alternative, equally parsimonious placements of the fossil in a molecular constraint tree of extant species. RESULTS: Bleximothyrium ostiolatum gen. et sp. nov. has an ostiolate scutellum of radiate, dichotomizing hyphae. Unlike otherwise similar extant and fossil taxa, B. ostiolatum has tangled hyphae at its scutellum margin. Scutella of B. ostiolatum are connected to superficial mycelium, to intercalary and lateral appressoria, and to extensive subcuticular "mycélium en palmettes". The gymnospermous host has characters consistent with identity as a non-papillate ginkgophyte or cycad. CONCLUSIONS: Bleximothyrium ostiolatum is the oldest known fossil fly-speck fungus that occurs on plant cuticles and has the radiate, ostiolate scutellum known only from Dothideomycetes. Its combination of characters, its scutellum margin, and mycélium en palmettes are unknown in other extant and fossil species, and Bleximothyrium ostiolatum likely represents a new group of fly-speck fungi that may now be extinct.


Assuntos
Cycadopsida , Fósseis , Filogenia , Folhas de Planta , Virginia
3.
New Phytol ; 228(1): 344-360, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32400897

RESUMO

The pinnately lobed Aptian leaf fossil Mesodescolea plicata was originally described as a cycad, but new evidence from cuticle structure suggests that it is an angiosperm. Here we document the morphology and cuticle anatomy of Mesodescolea and explore its significance for early angiosperm evolution. We observed macrofossils and cuticles of Mesodescolea with light, scanning electron and transmission electron microscopy, and used phylogenetic methods to test its relationships among extant angiosperms. Mesodescolea has chloranthoid teeth and tertiary veins forming elongate areoles. Its cuticular morphology and ultrastructure reject cycadalean affinities, whereas its guard cell shape and stomatal ledges are angiospermous. It shares variable stomatal complexes and epidermal oil cells with angiosperm leaves from the lower Potomac Group. Phylogenetic analyses and hypothesis testing support its placement within the basal ANITA grade, most likely in Austrobaileyales, but it diverges markedly in leaf form and venation. Although many Early Cretaceous angiosperms fall within the morphological range of extant taxa, Mesodescolea reveals unexpected early morphological and ecophysiological trends. Its similarity to other Early Cretaceous lobate leaves, many identified previously as eudicots but in some cases pre-dating the appearance of tricolpate pollen, may indicate that Mesodescolea is part of a larger extinct lineage of angiosperms.


Assuntos
Magnoliopsida , Evolução Biológica , Cycadopsida , Fósseis , Magnoliopsida/genética , Filogenia , Folhas de Planta
4.
Mycologia ; 112(3): 504-518, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32167869

RESUMO

Fly-speck fungi reproduce via thyriothecia that consist of sporogenous tissue appressed to cuticle surfaces of plant leaves and covered by a shield-like scutellum. Thyriothecial scutella likely evolved repeatedly in Dothideomycetes (Ascomycota), and their morphology varies by lineage. Fly-speck fungi have an exceptionally good fossil record that begins in the Mesozoic. The interpretation of scutellum characters in fossils may provide insights into origins of Dothideomycetes and help calibrate the timing of ascomycete evolution. From sediments of the Lower Cretaceous (125-112 Ma) Potomac Group of Virginia, from Dutch Gap Canal, lower Zone 1, we found scutella similar to those of extant Aulographaceae (Dothideomycetes), attached to a single piece of dispersed coniferous cuticle. We analyze hyphae and scutellum development among four extant Aulographaceae species for comparison with the fossil. The excellent preservation of fungi on the leaf cuticle surface allows us to infer a developmental sequence for the fossil. Scutellum development begins with coordinated growth of multiple neighboring generator hyphae and continues with hyphae producing two-dimensional pseudomonopodial, dichotomous, radial growth. Asci and ascospores were not found. We coded states for seven morphological characters using direct observations of the fossil and eight extant taxa, and using the literature for 28 others. We inferred a phylogeny using nuclear 18S and 28S rDNA of 36 extant taxa, 34 Dothideomycetes and two Arthoniomycetes. The phylogeny includes newly determined sequences from five species, two from Aulographaceae. With a branch-and-bound search, we inferred the most parsimonious placements of the fossil given the molecular tree topology. The parsimony analysis constrained by the rDNA phylogeny places the fossil taxon among stem lineages near Aulographaceae or among the known living members of Aulographaceae. We describe the fossil morphotype as Protographum luttrellii, gen. et sp. nov. The fossil provides the oldest evidence of morphological characters restricted among extant fungi to Aulographaceae.


Assuntos
Ascomicetos/classificação , Ascomicetos/genética , Evolução Biológica , Fósseis/história , Filogenia , Folhas de Planta/microbiologia , Traqueófitas/microbiologia , História Antiga , Virginia
5.
Sci Rep ; 6: 34222, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27677595

RESUMO

Cytosine methylation of DNA is an epigenetic modification involved in the repression of genes that affect biological processes including hematopoiesis. It is catalyzed by DNA methyltransferases, one of which -DNMT3A- is frequently mutated in human hematologic malignancies. We have previously reported that Dnmt3a inactivation in hematopoietic stem cells results in chronic lymphocytic leukemia (CLL) and CD8-positive peripheral T cell lymphomas (PTCL) in EµSRα-tTA;Teto-Cre;Dnmt3afl/fl; Rosa26LOXPEGFP/EGFP (Dnmt3aΔ/Δ) mice. The extent to which molecular changes overlap between these diseases is not clear. Using high resolution global methylation and expression analysis we show that whereas patterns of methylation and transcription in normal B-1a cells and CD8-positive T cells are similar, methylomes and transcriptomes in malignant B-1a and CD8+ T cells are remarkably distinct, suggesting a cell-type specific function for Dnmt3a in cellular transformation. Promoter hypomethylation in tumors was 10 times more frequent than hypermethylation, three times more frequent in CLL than PTCL and correlated better with gene expression than hypermethylation. Cross-species molecular comparison of mouse and human CLL and PTCL reveals significant overlaps and identifies putative oncogenic drivers of disease. Thus, Dnmt3aΔ/Δ mice can serve as a new mouse model to study CLL and PTCL in relevant physiological settings.

6.
Front Oncol ; 6: 182, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27563627

RESUMO

Over the last 30 years, studies of aberrant DNA methylation in hematologic malignancies have been dominated by the primary focus of understanding promoter hypermethylation. These efforts not only resulted in a better understanding of the basis of epigenetic silencing of tumor suppressor genes but also resulted in approval of hypomethylating agents for the treatment of several malignancies, such as myelodysplastic syndrome and acute myeloid leukemia. Recent advances in global methylation profiling coupled with the use of mouse models suggest that aberrant promoter hypomethylation is also a frequent event in hematologic malignancies, particularly in chronic lymphocytic leukemia (CLL). Promoter hypomethylation affects gene expression and, therefore, may play an important role in disease pathogenesis. Here, we review recent findings and discuss the potential involvement of aberrant promoter hypomethylation in CLL.

7.
Proc Biol Sci ; 282(1803): 20143052, 2015 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-25694625

RESUMO

Despite more than a century of research, some key aspects of habitat preference and ecology of the earliest angiosperms remain poorly constrained. Proposed growth ecology has varied from opportunistic weedy species growing in full sun to slow-growing species limited to the shaded understorey of gymnosperm forests. Evidence suggests that the earliest angiosperms possessed low transpiration rates: gas exchange rates for extant basal angiosperms are low, as are the reconstructed gas exchange rates for the oldest known angiosperm leaf fossils. Leaves with low transpirational capacity are vulnerable to overheating in full sun, favouring the hypothesis that early angiosperms were limited to the shaded understorey. Here, modelled leaf temperatures are used to examine the thermal tolerance of some of the earliest angiosperms. Our results indicate that small leaf size could have mitigated the low transpirational cooling capacity of many early angiosperms, enabling many species to survive in full sun. We propose that during the earliest phases of the angiosperm leaf record, angiosperms may not have been limited to the understorey, and that some species were able to compete with ferns and gymnosperms in both shaded and sunny habitats, especially in the absence of competition from more rapidly growing and transpiring advanced lineages of angiosperms.


Assuntos
Ecossistema , Magnoliopsida/fisiologia , Folhas de Planta/fisiologia , Florestas , Fósseis , Magnoliopsida/anatomia & histologia , Modelos Biológicos , Folhas de Planta/anatomia & histologia , Transpiração Vegetal/fisiologia , Luz Solar , Temperatura
8.
New Phytol ; 201(2): 636-644, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24117890

RESUMO

The strong positive relationship evident between cell and genome size in both animals and plants forms the basis of using the size of stomatal guard cells as a proxy to track changes in plant genome size through geological time. We report for the first time a taxonomic fine-scale investigation into changes in stomatal guard-cell length and use these data to infer changes in genome size through the evolutionary history of land plants. Our data suggest that many of the earliest land plants had exceptionally large genome sizes and that a predicted overall trend of increasing genome size within individual lineages through geological time is not supported. However, maximum genome size steadily increases from the Mississippian (c. 360 million yr ago (Ma)) to the present. We hypothesise that the functional relationship between stomatal size, genome size and atmospheric CO2 may contribute to the dichotomy reported between preferential extinction of neopolyploids and the prevalence of palaeopolyploidy observed in DNA sequence data of extant vascular plants.


Assuntos
Evolução Biológica , Tamanho do Genoma , Plantas/genética , Dióxido de Carbono/metabolismo , Classificação , Estômatos de Plantas/anatomia & histologia
9.
Proc Natl Acad Sci U S A ; 108(20): 8363-6, 2011 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-21536892

RESUMO

The flowering plants that dominate modern vegetation possess leaf gas exchange potentials that far exceed those of all other living or extinct plants. The great divide in maximal ability to exchange CO(2) for water between leaves of nonangiosperms and angiosperms forms the mechanistic foundation for speculation about how angiosperms drove sweeping ecological and biogeochemical change during the Cretaceous. However, there is no empirical evidence that angiosperms evolved highly photosynthetically active leaves during the Cretaceous. Using vein density (D(V)) measurements of fossil angiosperm leaves, we show that the leaf hydraulic capacities of angiosperms escalated several-fold during the Cretaceous. During the first 30 million years of angiosperm leaf evolution, angiosperm leaves exhibited uniformly low vein D(V) that overlapped the D(V) range of dominant Early Cretaceous ferns and gymnosperms. Fossil angiosperm vein densities reveal a subsequent biphasic increase in D(V). During the first mid-Cretaceous surge, angiosperm D(V) first surpassed the upper bound of D(V) limits for nonangiosperms. However, the upper limits of D(V) typical of modern megathermal rainforest trees first appear during a second wave of increased D(V) during the Cretaceous-Tertiary transition. Thus, our findings provide fossil evidence for the hypothesis that significant ecosystem change brought about by angiosperms lagged behind the Early Cretaceous taxonomic diversification of angiosperms.


Assuntos
Evolução Biológica , Fósseis , Magnoliopsida/genética , Padronização Corporal/genética , Ecossistema , Magnoliopsida/anatomia & histologia , Magnoliopsida/classificação , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...