Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Sci Rep ; 14(1): 1794, 2024 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245568

RESUMO

Plasma metabolomics profiling is an emerging methodology to identify metabolic pathways underlying cardiovascular health (CVH). The objective of this study was to define metabolomic profiles underlying CVH in a cohort of Black adults, a population that is understudied but suffers from disparate levels of CVD risk factors. The Morehouse-Emory Cardiovascular (MECA) Center for Health Equity study cohort consisted of 375 Black adults (age 53 ± 10, 39% male) without known CVD. CVH was determined by the AHA Life's Simple 7 (LS7) score, calculated from measured blood pressure, body mass index (BMI), fasting blood glucose and total cholesterol, and self-reported physical activity, diet, and smoking. Plasma metabolites were assessed using untargeted high-resolution metabolomics profiling. A metabolome wide association study (MWAS) identified metabolites associated with LS7 score after adjusting for age and sex. Using Mummichog software, metabolic pathways that were significantly enriched in metabolites associated with LS7 score were identified. Metabolites representative of these pathways were compared across clinical domains of LS7 score and then developed into a metabolomics risk score for prediction of CVH. We identified novel metabolomic signatures and pathways associated with CVH in a cohort of Black adults without known CVD. Representative and highly prevalent metabolites from these pathways included glutamine, glutamate, urate, tyrosine and alanine, the concentrations of which varied with BMI, fasting glucose, and blood pressure levels. When assessed in conjunction, these metabolites were independent predictors of CVH. One SD increase in the novel metabolomics risk score was associated with a 0.88 higher LS7 score, which translates to a 10.4% lower incident CVD risk. We identified novel metabolomic signatures of ideal CVH in a cohort of Black Americans, showing that a core group of metabolites central to nitrogen balance, bioenergetics, gluconeogenesis, and nucleotide synthesis were associated with CVH in this population.


Assuntos
Doenças Cardiovasculares , Adulto , Humanos , Masculino , Estados Unidos , Pessoa de Meia-Idade , Feminino , Doenças Cardiovasculares/epidemiologia , Fatores de Risco , Pressão Sanguínea/fisiologia , Fumar , Dieta , Nível de Saúde
2.
Artigo em Inglês | MEDLINE | ID: mdl-38130370

RESUMO

Background: Retinoblastoma is rare but nevertheless the most common pediatric eye cancer that occurs in children under age 5. High-resolution metabolomics (HRM) is a powerful analytical approach to profile metabolic features and pathways or identify metabolite biomarkers. To date, no studies have used pre-diagnosis blood samples from retinoblastoma cases and compared them to healthy controls to elucidate early perturbations in tumor pathways. Objectives: Here, we report on metabolic profiles of neonatal blood comparing cases later in childhood diagnosed with retinoblastoma and controls. Methods: We employed untargeted metabolomics analysis using neonatal dried blood spots for 1327 children (474 retinoblastoma cases and 853 healthy controls) born in California from 1983 to 2011. Cases were selected from the California Cancer Registry and controls, frequency matched to cases by birth year, from California birth rolls. We performed high-resolution metabolomics to extract metabolic features, partial least squares discriminant analysis (PLS-DA) and logistic regression to identify features associated with disease, and Mummichog pathway analysis to characterize enriched biological pathways. Results: PLS-DA identified 1917 discriminative features associated with retinoblastoma and Mummichog identified 14 retinoblastoma-related enriched pathways including linoleate metabolism, pentose phosphate pathway, pyrimidine metabolism, fructose and mannose metabolism, vitamin A metabolism, as well as fatty acid and lipid metabolism. Interpretation: Our findings linked a retinoblastoma diagnosis in early life to newborn blood metabolome perturbations indicating alterations in inflammatory pathways and energy metabolism. Neonatal blood spots may provide a venue for early detection for this or potentially other childhood cancers.

3.
Am J Epidemiol ; 192(10): 1720-1730, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37218607

RESUMO

Epidemiologic studies of low-frequency exposures or outcomes using metabolomics analyses of neonatal dried blood spots (DBS) often require assembly of samples with substantial differences in duration of storage. Independent assessment of stability of metabolites in archived DBS will enable improved design and interpretation of epidemiologic research utilizing DBS. Neonatal DBS routinely collected and stored as part of the California Genetic Disease Screening Program between 1983 and 2011 were used. The study population included 899 children without cancer before age 6 years, born in California. High-resolution metabolomics with liquid-chromatography mass spectrometry was performed, and the relative ion intensities of common metabolites and selected xenobiotic metabolites of nicotine (cotinine and hydroxycotinine) were evaluated. In total, we detected 26,235 mass spectral features across 2 separate chromatography methods (C18 hydrophobic reversed-phase chromatography and hydrophilic-interaction liquid chromatography). For most of the 39 metabolites related to nutrition and health status, we found no statistically significant annual trends across the years of storage. Nicotine metabolites were captured in the DBS with relatively stable intensities. This study supports the usefulness of DBS stored long-term for epidemiologic studies of the metabolome. -Omics-based information gained from DBS may also provide a valuable tool for assessing prenatal environmental exposures in child health research.


Assuntos
Metabolômica , Nicotina , Gravidez , Criança , Recém-Nascido , Feminino , Humanos , Cromatografia Líquida , Metabolômica/métodos , Metaboloma , Estudos Epidemiológicos , Teste em Amostras de Sangue Seco/métodos
4.
Antioxidants (Basel) ; 12(4)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37107179

RESUMO

Antagonistic interaction refers to opposing beneficial and adverse signaling by a single agent. Understanding opposing signaling is important because pathologic outcomes can result from adverse causative agents or the failure of beneficial mechanisms. To test for opposing responses at a systems level, we used a transcriptome-metabolome-wide association study (TMWAS) with the rationale that metabolite changes provide a phenotypic readout of gene expression, and gene expression provides a phenotypic readout of signaling metabolites. We incorporated measures of mitochondrial oxidative stress (mtOx) and oxygen consumption rate (mtOCR) with TMWAS of cells with varied manganese (Mn) concentration and found that adverse neuroinflammatory signaling and fatty acid metabolism were connected to mtOx, while beneficial ion transport and neurotransmitter metabolism were connected to mtOCR. Each community contained opposing transcriptome-metabolome interactions, which were linked to biologic functions. The results show that antagonistic interaction is a generalized cell systems response to mitochondrial ROS signaling.

5.
Retina ; 43(3): 481-489, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36730579

RESUMO

PURPOSE: Previous studies examining the risk of retinoblastoma with maternal smoking were inconclusive, likely due in part to the reliance on self-reported maternal smoking. This study uses biomarkers of tobacco smoking in neonatal dried blood spots to investigate associations between maternal smoking and retinoblastoma in offspring. METHODS: The authors randomly selected 498 retinoblastoma cases and 895 control subjects born between 1983 and 2011 from a population-based case-control study in California. Maternal pregnancy-related smoking was measured using the following three metrics: provider or self-reported smoking during pregnancy, cotinine, and hydroxycotinine in neonatal blood. The authors used multivariable logistic regression to estimate the effects of maternal tobacco smoking on retinoblastoma. RESULTS: Using all metrics (biomarkers or self-report), maternal smoking late in pregnancy or early postpartum was related to retinoblastoma (all types; odds ratio = 1.44, 95% confidence interval: 1.00-2.09). Relying on cotinine or hydroxycotinine to ascertain smoking, maternal smoking was related to unilateral retinoblastoma (odds ratio = 1.66, 95% confidence interval: 1.08-2.57). CONCLUSION: The results indicate that maternal smoking during pregnancy may be a risk factor for retinoblastoma, particularly among unilateral cases.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Neoplasias da Retina , Retinoblastoma , Recém-Nascido , Gravidez , Feminino , Humanos , Cotinina , Estudos de Casos e Controles , Fumar , Fumar Tabaco , Biomarcadores , Neoplasias da Retina/complicações
6.
Sci Data ; 9(1): 722, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36433985

RESUMO

Plasmodium cynomolgi causes zoonotic malarial infections in Southeast Asia and this parasite species is important as a model for Plasmodium vivax and Plasmodium ovale. Each of these species produces hypnozoites in the liver, which can cause relapsing infections in the blood. Here we present methods and data generated from iterative longitudinal systems biology infection experiments designed and performed by the Malaria Host-Pathogen Interaction Center (MaHPIC) to delve deeper into the biology, pathogenesis, and immune responses of P. cynomolgi in the Macaca mulatta host. Infections were initiated by sporozoite inoculation. Blood and bone marrow samples were collected at defined timepoints for biological and computational experiments and integrative analyses revolving around primary illness, relapse illness, and subsequent disease and immune response patterns. Parasitological, clinical, haematological, immune response, and -omic datasets (transcriptomics, proteomics, metabolomics, and lipidomics) including metadata and computational results have been deposited in public repositories. The scope and depth of these datasets are unprecedented in studies of malaria, and they are projected to be a F.A.I.R., reliable data resource for decades.


Assuntos
Malária , Plasmodium cynomolgi , Animais , Interações Hospedeiro-Patógeno , Macaca mulatta , Plasmodium cynomolgi/fisiologia , Esporozoítos , Biologia de Sistemas , Zoonoses
7.
Cancer Cell Int ; 22(1): 286, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123697

RESUMO

BACKGROUND: Intratumoral (IT) delivery of toll-like receptor (TLR) agonists has shown encouraging anti-tumor benefit in preclinical and early clinical studies. However, IT delivery of TLR agonists may lead to rapid effusion from the tumor microenvironment (TME), potentially limiting the duration of local inflammation and increasing the risk of systemic adverse events. METHODS: To address these limitations, TransCon™ TLR7/8 Agonist-an investigational sustained-release prodrug of resiquimod that uses a TransCon linker and hydrogel technology to achieve sustained and predictable IT release of resiquimod-was developed. TransCon TLR7/8 Agonist was characterized for resiquimod release in vitro and in vivo, in mice and rats, and was assessed for anti-tumor efficacy and pharmacodynamic activity in mice. RESULTS: Following a single IT dose, TransCon TLR7/8 Agonist mediated potent tumor growth inhibition which was associated with sustained resiquimod release over several weeks with minimal induction of systemic cytokines. TransCon TLR7/8 Agonist monotherapy promoted activation of antigen-presenting cells in the TME and tumor-draining lymph nodes, with evidence of activation and expansion of CD8+ T cells in the tumor-draining lymph node and TME. Combination of TransCon TLR7/8 Agonist with systemic immunotherapy further promoted anti-tumor activity in TransCon TLR7/8 Agonist-treated tumors. In a bilateral tumor setting, combination of TransCon TLR7/8 Agonist with systemic IL-2 potentiated tumor growth inhibition in both injected and non-injected tumors and conferred protection against tumor rechallenge following complete regressions. CONCLUSIONS: Our findings show that a single dose of TransCon TLR7/8 Agonist can mediate sustained local release of resiquimod in the TME and promote potent anti-tumor effects as monotherapy and in combination with systemic immunotherapy, supporting TransCon TLR7/8 Agonist as a novel intratumoral TLR agonist for cancer therapy. A clinical trial to evaluate the safety and efficacy of TransCon TLR7/8 Agonist, as monotherapy and in combination with pembrolizumab, in cancer patients is currently ongoing (transcendIT-101; NCT04799054).

8.
J Immunother Cancer ; 10(7)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35817480

RESUMO

BACKGROUND: Recombinant interleukin-2 (IL-2, aldesleukin) is an approved cancer immunotherapy but causes severe toxicities including cytokine storm and vascular leak syndrome (VLS). IL-2 promotes antitumor function of IL-2Rß/γ+ natural killer (NK) cells and CD8+, CD4+ and gamma delta (γδ) T cells. However, IL-2 also potently activates immunosuppressive IL-2Rα+ regulatory T cells (Tregs) and IL-2Rα+ eosinophils and endothelial cells, which may promote VLS. Aldesleukin is rapidly cleared requiring frequent dosing, resulting in high Cmax likely potentiating toxicity. Thus, IL-2 cancer immunotherapy has two critical drawbacks: potent activation of undesired IL-2Rα+ cells and suboptimal pharmacokinetics with high Cmax and short half-life. METHODS: TransCon IL-2 ß/γ was designed to optimally address these drawbacks. To abolish IL-2Rα binding yet retain strong IL-2Rß/γ activity, IL-2 ß/γ was created by permanently attaching a small methoxy polyethylene glycol (mPEG) moiety in the IL-2Rα binding site. To improve pharmacokinetics, IL-2 ß/γ was transiently attached to a 40 kDa mPEG carrier via a TransCon (transient conjugation) linker creating a prodrug, TransCon IL-2 ß/γ, with sustained release of IL-2 ß/γ. IL-2 ß/γ was characterized in binding and primary cell assays while TransCon IL-2 ß/γ was studied in tumor-bearing mice and cynomolgus monkeys. RESULTS: IL-2 ß/γ demonstrated selective and potent human IL-2Rß/γ binding and activation without IL-2Rα interactions. TransCon IL-2 ß/γ showed slow-release pharmacokinetics with a low Cmax and a long (>30 hours) effective half-life for IL-2 ß/γ in monkeys. In mouse tumor models, TransCon IL-2 ß/γ promoted CD8+ T cell and NK cell activation and antitumor activity. In monkeys, TransCon IL-2 ß/γ induced robust activation and expansion of CD8+ T cells, NK cells and γδ T cells, relative to CD4+ T cells, Tregs and eosinophils, with no evidence of cytokine storm or VLS. Similarly, IL-2 ß/γ enhanced proliferation and cytotoxicity of primary human CD8+ T cells, NK cells and γδ T cells. SUMMARY: TransCon IL-2 ß/γ is a novel long-acting prodrug with sustained release of an IL-2Rß/γ-selective IL-2. It has remarkable and durable pharmacodynamic effects in monkeys and potential for improved clinical efficacy and tolerability compared with aldesleukin. TransCon IL-2 ß/γ is currently being evaluated in a Phase 1/2 clinical trial (NCT05081609).


Assuntos
Neoplasias , Pró-Fármacos , Animais , Linfócitos T CD8-Positivos , Síndrome da Liberação de Citocina , Preparações de Ação Retardada/farmacologia , Células Endoteliais , Humanos , Interleucina-2/farmacologia , Subunidade alfa de Receptor de Interleucina-2 , Camundongos , Neoplasias/tratamento farmacológico , Pró-Fármacos/farmacologia
9.
Med Sci Sports Exerc ; 54(10): 1617-1624, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35617604

RESUMO

PURPOSE: Metabolomics identifies molecular products produced in response to numerous stimuli, including both adaptive (includes exercise training) and disease processes. We analyzed a longitudinal cohort of American-style football (ASF) athletes, who reliably acquire maladaptive cardiovascular (CV) phenotypes during competitive training, with high-resolution metabolomics to determine whether metabolomics can discriminate exercise-induced CV adaptations from early CV pathology. METHODS: Matched discovery ( n = 42) and validation ( n = 40) multicenter cohorts of collegiate freshman ASF athletes were studied with longitudinal echocardiography, applanation tonometry, and high-resolution metabolomics. Liquid chromatography-mass spectrometry identified metabolites that changed ( P < 0.05, false discovery rate <0.2) over the season. Metabolites demonstrating similar changes in both cohorts were further analyzed in linear and mixed-effects models to identify those associated with left ventricular mass, tissue-Doppler myocardial E ' velocity (diastolic function), and arterial function (pulse wave velocity). RESULTS: In both cohorts, 20 common metabolites changed similarly across the season. Metabolites reflective of favorable CV health included an increase in arginine and decreases in hypoxanthine and saturated fatty acids (heptadecanoate, arachidic acid, stearate, and hydroxydecanoate). In contrast, metabolic perturbations of increased lysine and pipecolate, reflective of adverse CV health, were also observed. Adjusting for player position, race, height, and changes in systolic blood pressure, weight, and pulse wave velocity, increased lysine ( ß = 0.018, P = 0.02) and pipecolate ( ß = 0.018, P = 0.02) were associated with increased left ventricular mass index. In addition, increased lysine ( ß = -0.049, P = 0.01) and pipecolate ( ß = -0.052, P = 0.008) were also associated with lower E ' (reduced diastolic function). CONCLUSIONS: ASF athletes seem to develop metabolomic changes reflective of both favorable CV health and early CV maladaptive phenotypes. Whether metabolomics can discriminate early pathologic CV transformations among athletes is a warranted future research direction.


Assuntos
Futebol Americano , Arginina , Atletas , Ácidos Eicosanoicos , Futebol Americano/fisiologia , Humanos , Hipoxantinas , Lisina , Análise de Onda de Pulso/métodos , Estearatos , Função Ventricular Esquerda/fisiologia
10.
Metabolomics ; 18(4): 23, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35391564

RESUMO

INTRODUCTION: Excessive daytime sleepiness is a debilitating symptom of obstructive sleep apnea (OSA) linked to cardiovascular disease, and metabolomic mechanisms underlying this relationship remain unknown. We examine whether metabolites from inflammatory and oxidative stress-related pathways that were identified in our prior work could be involved in connecting the two phenomena. METHODS: This study included 57 sleepy (Epworth Sleepiness Scale (ESS) ≥ 10) and 37 non-sleepy (ESS < 10) participants newly diagnosed and untreated for OSA that completed an overnight in-lab or at home sleep study who were recruited from the Emory Mechanisms of Sleepiness Symptoms Study (EMOSS). Differences in fasting blood samples of metabolites were explored in participants with sleepiness versus those without and multiple linear regression models were utilized to examine the association between metabolites and mean arterial pressure (MAP). RESULTS: The 24-h MAP was higher in sleepy 92.8 mmHg (8.4) as compared to non-sleepy 88.8 mmHg (8.1) individuals (P = 0.03). Although targeted metabolites were not significantly associated with MAP, when we stratified by sleepiness group, we found that sphinganine is significantly associated with MAP (Estimate = 8.7, SE = 3.7, P = 0.045) in non-sleepy patients when controlling for age, BMI, smoking status, and apnea-hypopnea index (AHI). CONCLUSION: This is the first study to evaluate the relationship of inflammation and oxidative stress related metabolites in sleepy versus non-sleepy participants with newly diagnosed OSA and their association with 24-h MAP. Our study suggests that Sphinganine is associated with 24 hour MAP in the non-sleepy participants with OSA.


Assuntos
Apneia Obstrutiva do Sono , Sonolência , Pressão Arterial , Humanos , Metabolômica , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/diagnóstico , Esfingosina/análogos & derivados
11.
Environ Res ; 203: 111907, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34419469

RESUMO

BACKGROUND: Maternal exposure to traffic-related air pollution during pregnancy has been shown to increase the risk of adverse birth outcomes and childhood disorders. High-resolution metabolomics (HRM) has previously been employed to identify metabolic responses to traffic-related air pollution in adults, including pregnant women. Thus far, no studies have examined metabolic effects of air pollution exposure in utero on neonates. METHODS: We retrieved stored neonatal blood spots for 241 children born in California between 1998 and 2007. These children were randomly selected from all California birth rolls to serve as birth-year matched controls for children with retinoblastoma identified from the California cancer registry for a case control study of childhood cancer. We estimated prenatal traffic-related air pollution exposure (particulate matter less than 2.5 µm (PM2.5)) during the third-trimester using the California Line Source Dispersion Model, version 4 (CALINE4) based on residential addresses recorded at birth. We employed untargeted HRM to obtain metabolic profiles, and metabolites associated with air pollution exposure were identified using partial least squares (PLS) regression and linear regressions. Biological effects were characterized using pathway enrichment analyses adjusting for potential confounders including maternal age, race/ethnicity, and education. RESULTS: In total we extracted 4038 and 4957 metabolite features from neonatal blood spots in hydrophilic interaction (HILIC) chromatography (positive ion mode) and C18 reverse phase columns (negative ion mode), respectively. After controlling for confounding factors, partial least square regression (Variable Importance in Projection (VIP) ≥ 2) selected 402 HILIC positive and 182 C18 negative features as statistically significantly associated with increasing third trimester PM2.5 exposure. Using pathway enrichment analysis, we identified metabolites in oxidative stress and inflammation pathways as being altered, primarily involving lipid metabolism. CONCLUSION: The metabolite features and pathways associated with air pollution exposure in neonates suggest that maternal exposure during late pregnancy contributes to oxidative stress and inflammation in newborn children.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluição Relacionada com o Tráfego , Adulto , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Estudos de Casos e Controles , Feminino , Humanos , Recém-Nascido , Metaboloma , Gravidez
12.
Nat Metab ; 3(12): 1694-1705, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34931082

RESUMO

Obesity and obesity-related metabolic disorders are linked to the intestinal microbiome. However, the causality of changes in the microbiome-host interaction affecting energy metabolism remains controversial. Here, we show the microbiome-derived metabolite δ-valerobetaine (VB) is a diet-dependent obesogen that is increased with phenotypic obesity and is correlated with visceral adipose tissue mass in humans. VB is absent in germ-free mice and their mitochondria but present in ex-germ-free conventionalized mice and their mitochondria. Mechanistic studies in vivo and in vitro show VB is produced by diverse bacterial species and inhibits mitochondrial fatty acid oxidation through decreasing cellular carnitine and mitochondrial long-chain acyl-coenzyme As. VB administration to germ-free and conventional mice increases visceral fat mass and exacerbates hepatic steatosis with a western diet but not control diet. Thus, VB provides a molecular target to understand and potentially manage microbiome-host symbiosis or dysbiosis in diet-dependent obesity.


Assuntos
Metabolismo Energético , Interações entre Hospedeiro e Microrganismos , Microbiota , Obesidade/metabolismo , Adiposidade , Animais , Dieta Ocidental , Ácidos Graxos/metabolismo , Microbioma Gastrointestinal , Humanos , Metabolismo dos Lipídeos , Fígado/metabolismo , Camundongos , Mitocôndrias/metabolismo , Obesidade/etiologia , Oxirredução
13.
Cells ; 10(11)2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34831363

RESUMO

To characterize metabolites and metabolic pathways altered in intermediate and neovascular age-related macular degeneration (IAMD and NVAMD), high resolution untargeted metabolomics was performed via liquid chromatography-mass spectrometry on plasma samples obtained from 91 IAMD patients, 100 NVAMD patients, and 195 controls. Plasma metabolite levels were compared between: AMD patients and controls, IAMD patients and controls, and NVAMD and IAMD patients. Partial least-squares discriminant analysis and linear regression were used to identify discriminatory metabolites. Pathway analysis was performed to determine metabolic pathways altered in AMD. Among the comparisons, we identified 435 unique discriminatory metabolic features. Using computational methods and tandem mass spectrometry, we identified 11 metabolic features whose molecular identities had been previously verified and confirmed the molecular identities of three additional discriminatory features. Included among the discriminatory metabolites were acylcarnitines, phospholipids, amino acids, and steroid metabolites. Pathway analysis revealed that lipid, amino acid, and vitamin metabolism pathways were altered in NVAMD, IAMD, or AMD in general, including the carnitine shuttle pathway which was significantly altered in all comparisons. Finally, few discriminatory features were identified between IAMD patients and controls, suggesting that plasma metabolic profiles of IAMD patients are more similar to controls than to NVAMD patients.


Assuntos
Degeneração Macular/sangue , Degeneração Macular/metabolismo , Metabolômica , Neovascularização Patológica/sangue , Neovascularização Patológica/metabolismo , Idoso , Carnitina/análogos & derivados , Carnitina/sangue , Estudos de Casos e Controles , Análise Discriminante , Feminino , Humanos , Análise dos Mínimos Quadrados , Modelos Lineares , Lipídeos/sangue , Masculino , Redes e Vias Metabólicas , Metaboloma , Pessoa de Meia-Idade
14.
Nat Commun ; 12(1): 5575, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34552080

RESUMO

Complementing the genome with an understanding of the human exposome is an important challenge for contemporary science and technology. Tens of thousands of chemicals are used in commerce, yet cost for targeted environmental chemical analysis limits surveillance to a few hundred known hazards. To overcome limitations which prevent scaling to thousands of chemicals, we develop a single-step express liquid extraction and gas chromatography high-resolution mass spectrometry analysis to operationalize the human exposome. We show that the workflow supports quantification of environmental chemicals in human plasma (200 µL) and tissue (≤100 mg) samples. The method also provides high resolution, sensitivity and selectivity for exposome epidemiology of mass spectral features without a priori knowledge of chemical identity. The simplicity of the method can facilitate harmonization of environmental biomonitoring between laboratories and enable population level human exposome research with limited sample volume.


Assuntos
Expossoma , Fluxo de Trabalho , Monitoramento Ambiental , Poluentes Ambientais/análise , Poluentes Ambientais/normas , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Metabolômica , Padrões de Referência
15.
J Hazard Mater ; 416: 125956, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492873

RESUMO

Exposure to a single organochlorine pesticide (OCP) at high concentration and over a short period of exposure constrain our understanding of the contribution of chemical exposure to type 2 diabetes (T2D). A total of 450 male and female zebrafish was exposed to mixtures of five OCPs at 0, 0.05, 0.25, 2.5, and 25 µg/L for 12 weeks. T2D-related hematological parameters (i.e., glucose, insulin, free fatty acid, and triglycerides) and mitochondrial complex I to IV activities were assessed. Metabolomics, proteomics, and transcriptomics were analyzed in female livers, and their data-driven integration was performed. High fasting glucose and low insulin levels were observed only at 0.05 µg/L of the OCP mixture in females, indicating a nonlinear and sexually dependent response. We found that exposure to the OCP mixture inhibited the activities of mitochondrial complexes, especially III and IV. Combining individual and integrated omics analysis, T2D-linked metabolic pathways that regulate mitochondrial function, insulin signaling, and energy homeostasis were altered by the OCP mixture, which explains the observed phenotypic hematological effects. We demonstrated the cause-and-effect relationship between exposures to OCP mixture and T2D using zebrafish model. This study gives an insight into mechanistic research of metabolic diseases caused by chemical exposure using zebrafish.


Assuntos
Diabetes Mellitus Tipo 2 , Hidrocarbonetos Clorados , Praguicidas , Animais , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/genética , Feminino , Insulina , Masculino , Praguicidas/análise , Praguicidas/toxicidade , Peixe-Zebra
16.
Environ Int ; 157: 106810, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34365318

RESUMO

BACKGROUND: Chronic exposure to certain metals plays a role in disease development. Integrating untargeted metabolomics with urinary metallome data may contribute to better understanding the pathophysiology of diseases and complex molecular interactions related to environmental metal exposures. To discover novel associations between urinary metal biomarkers and metabolism networks, we conducted an integrative metallome-metabolome analysis using a panel of urinary metals and untargeted blood metabolomic data from the Strong Heart Family Study (SHFS). METHODS: The SHFS is a prospective family-based cohort study comprised of American Indian men and women recruited in 2001-2003. This nested case-control analysis of 145 participants of which 50 developed incident diabetes at follow up in 2006-2009, included participants with urinary metal and untargeted metabolomic data. Concentrations of 8 creatinine-adjusted urine metals/metalloids [antimony (Sb), cadmium (Cd), lead (Pb), molybdenum (Mo), selenium (Se), tungsten (W), uranium (U) and zinc (Zn)], and 4 arsenic species [inorganic arsenic (iAs), monomethylarsonate (MMA), dimethylarsinate (DMA), and arsenobetaine (AsB)] were measured. Global metabolomics was performed on plasma samples using high-resolution Orbitrap mass spectrometry. We performed an integrative network analysis using xMWAS and a metabolic pathway analysis using Mummichog. RESULTS: 8,810 metabolic features and 12 metal species were included in the integrative network analysis. Most metal species were associated with distinct subsets of metabolites, forming single-metal-multiple-metabolite clusters (|r|>0.28, p-value < 0.001). DMA (clustering with W), iAs (clustering with U), together with Mo and Se showed modest interactions through associations with common metabolites. Pathway enrichment analysis of associated metabolites (|r|>0.17, p-value < 0.1) showed effects in amino acid metabolism (AsB, Sb, Se and U), fatty acid and lipid metabolism (iAs, Mo, W, Sb, Pb, Cd and Zn). In stratified analyses among participants who went on to develop diabetes, iAs and U clustered together through shared metabolites, and both were associated with the phosphatidylinositol phosphate metabolism pathway; metals were also associated with metabolites in energy metabolism (iAs, MMA, DMA, U, W) and xenobiotic degradation and metabolism (DMA, Pb) pathways. CONCLUSION: In this integrative analysis of multiple metals and untargeted metabolomics, results show common associations with fatty acid, energy and amino acid metabolism pathways. Results for individual metabolite associations differed for different metals, indicating that larger populations will be needed to confirm the metal-metal interactions detected here, such as the strong interaction of uranium and inorganic arsenic. Understanding the biochemical networks underlying metabolic homeostasis and their association with exposure to multiple metals may help identify novel biomarkers, pathways of disease, potential signatures of environmental metal exposure.


Assuntos
Arsênio , Diabetes Mellitus , Urânio , Estudos de Coortes , Diabetes Mellitus/epidemiologia , Exposição Ambiental/análise , Feminino , Humanos , Masculino , Metaboloma , Estudos Prospectivos
17.
Cancer Epidemiol Biomarkers Prev ; 30(10): 1858-1866, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376485

RESUMO

BACKGROUND: Metabolic differences between human papillomavirus (HPV)-associated head and neck squamous cell carcinoma (HNSCC) and smoking-associated HNSCC may partially explain differences in prognosis. The former relies on mitochondrial oxidative phosphorylation (OXPHOS) while the latter relies on glycolysis. These differences have not been studied in blood. METHODS: We extracted metabolites using untargeted liquid chromatography high-resolution mass spectrometry from pretreatment plasma in a cohort of 55 HPV-associated and 82 smoking-associated HNSCC subjects. Metabolic pathway enrichment analysis of differentially expressed metabolites produced pathway-based signatures. Significant pathways (P < 0.05) were reduced via principal component analysis and assessed with overall survival via Cox models. We classified each subject as glycolytic or OXPHOS phenotype and assessed it with survival. RESULTS: Of 2,410 analyzed metabolites, 191 were differentially expressed. Relative to smoking-associated HNSCC, bile acid biosynthesis (P < 0.0001) and octadecatrienoic acid beta-oxidation (P = 0.01), were upregulated in HPV-associated HNSCC, while galactose metabolism (P = 0.001) and vitamin B6 metabolism (P = 0.01) were downregulated; the first two suggest an OXPHOS phenotype while the latter two suggest glycolytic. First principal components of bile acid biosynthesis [HR = 0.52 per SD; 95% confidence interval (CI), 0.38-0.72; P < 0.001] and octadecatrienoic acid beta-oxidation (HR = 0.54 per SD; 95% CI, 0.38-0.78; P < 0.001) were significantly associated with overall survival independent of HPV and smoking. The glycolytic versus OXPHOS phenotype was also independently associated with survival (HR = 3.17; 95% CI, 1.07-9.35; P = 0.04). CONCLUSIONS: Plasma metabolites related to glycolysis and mitochondrial OXPHOS may be biomarkers of HNSCC patient prognosis independent of HPV or smoking. Future investigations should determine whether they predict treatment efficacy. IMPACT: Blood metabolomics may be a useful marker to aid HNSCC patient prognosis.


Assuntos
Neoplasias de Cabeça e Pescoço/metabolismo , Papillomaviridae/metabolismo , Fumar/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Idoso , Biomarcadores Tumorais/metabolismo , Feminino , Neoplasias de Cabeça e Pescoço/sangue , Neoplasias de Cabeça e Pescoço/mortalidade , Neoplasias de Cabeça e Pescoço/virologia , Humanos , Masculino , Metabolômica , Pessoa de Meia-Idade , Fenótipo , Carcinoma de Células Escamosas de Cabeça e Pescoço/sangue , Carcinoma de Células Escamosas de Cabeça e Pescoço/mortalidade , Carcinoma de Células Escamosas de Cabeça e Pescoço/virologia
18.
Nat Commun ; 12(1): 1929, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33771987

RESUMO

Leigh syndrome (LS) is a severe manifestation of mitochondrial disease in children and is currently incurable. The lack of effective models hampers our understanding of the mechanisms underlying the neuronal pathology of LS. Using patient-derived induced pluripotent stem cells and CRISPR/Cas9 engineering, we developed a human model of LS caused by mutations in the complex IV assembly gene SURF1. Single-cell RNA-sequencing and multi-omics analysis revealed compromised neuronal morphogenesis in mutant neural cultures and brain organoids. The defects emerged at the level of neural progenitor cells (NPCs), which retained a glycolytic proliferative state that failed to instruct neuronal morphogenesis. LS NPCs carrying mutations in the complex I gene NDUFS4 recapitulated morphogenesis defects. SURF1 gene augmentation and PGC1A induction via bezafibrate treatment supported the metabolic programming of LS NPCs, leading to restored neuronal morphogenesis. Our findings provide mechanistic insights and suggest potential interventional strategies for a rare mitochondrial disease.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Doença de Leigh/genética , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Mutação , Neurônios/metabolismo , Organoides/metabolismo , Células Cultivadas , Pré-Escolar , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Doença de Leigh/metabolismo , Masculino , Metabolômica/métodos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Morfogênese/genética , Neurônios/citologia , Proteômica/métodos , Análise de Célula Única/métodos , Sequenciamento do Exoma
19.
Environ Res ; 196: 110823, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33548296

RESUMO

BACKGROUND: Previously, numerous epidemiologic studies reported an association between autism spectrum disorder (ASD) and exposure to air pollution during pregnancy. However, there have been no metabolomics studies investigating the impact of pregnancy pollution exposure to ASD risk in offspring. OBJECTIVES: To identify differences in maternal metabolism that may reflect a biological response to exposure to high air pollution in pregnancies of offspring who later did or did not develop ASD. METHODS: We obtained stored mid-pregnancy serum from 214 mothers who lived in California's Central Valley and experienced the highest levels of air pollution during early pregnancy. We estimated each woman's average traffic-related air pollution exposure (carbon monoxide, nitric oxides, and particulate matter <2.5 µm) during the first trimester using the California Line Source Dispersion Model, version 4 (CALINE4). By utilizing liquid chromatography-high resolution mass spectrometry, we identified the metabolic profiles of maternal serum for 116 mothers with offspring who later developed ASD and 98 control mothers. Partial least squares discriminant analysis (PLS-DA) was employed to select metabolic features associated with air pollution exposure or autism risk in offspring. We also conducted extensive pathway enrichment analysis to elucidate potential ASD-related changes in the metabolome of pregnant women. RESULTS: We extracted 4022 and 4945 metabolic features from maternal serum samples in hydrophilic interaction (HILIC) chromatography (positive ion mode) and C18 (negative ion mode) columns, respectively. After controlling for potential confounders, we identified 167 and 222 discriminative features (HILIC and C18, respectively). Pathway enrichment analysis to discriminate metabolic features associated with ASD risk indicated various metabolic pathway perturbations linked to the tricarboxylic acid (TCA) cycle and mitochondrial function, including carnitine shuttle, amino acid metabolism, bile acid metabolism, and vitamin A metabolism. CONCLUSION: Using high resolution metabolomics, we identified several metabolic pathways disturbed in mothers with ASD offspring among women experiencing high exposure to traffic-related air pollution during pregnancy that were associated with mitochondrial dysfunction. These findings provide us with a better understanding of metabolic disturbances involved in the development of ASD under adverse environmental conditions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Transtorno do Espectro Autista , Poluição Relacionada com o Tráfego , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Poluição do Ar/estatística & dados numéricos , Transtorno do Espectro Autista/epidemiologia , Transtorno do Espectro Autista/etiologia , Feminino , Humanos , Exposição Materna/estatística & dados numéricos , Metabolômica , Gravidez
20.
Food Chem ; 339: 128051, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32950899

RESUMO

Phytochelatins (PyCs) are metal-binding compounds produced by plants. PyCs may reduce bioavailability of dietary toxic metals such as cadmium. However, the PyC concentrations in foods are unknown. The objective of this study was to analyze PyC contents in a subset of commonly consumed plant foods. Foods (20) across five groups were analyzed and PyCs quantified using liquid chromatography-mass spectrometry (LC-MS/MS). The impact of factors such as food processing were also explored. PyCs were in all 20 foods. Five PyC types were detected with PyC2-Gly, PyC3-Gly and PyC2-Ala at quantifiable concentrations. PyC2-Gly was found at the highest concentrations and most widely distributed. PyC2-Gly concentrations were highest in fruits and root vegetables. Foods with increased processing tended to have reduced PyC concentrations. This survey of commonly consumed plant foods in the United States demonstrates PyCs are widely distributed and provides a foundation for understanding their concentrations and impact in the human diet.


Assuntos
Fabaceae/química , Frutas/química , Fitoquelatinas , Verduras/química , Cromatografia Líquida/métodos , Grão Comestível/química , Manipulação de Alimentos , Fitoquelatinas/química , Inquéritos e Questionários , Espectrometria de Massas em Tandem/métodos , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...