Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Res Struct Biol ; 7: 100151, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38881558

RESUMO

The COVID-19 pandemic in the later phase showed the presence of the B.1.1.529 variant of the SARS-CoV-2 designated as Omicron. AYUSH-64 a poly herbal drug developed by Central Council for Research in Ayurvedic Sciences (CCRAS) has been recommended by Ministry of Ayush in asymptomatic, mild to moderate COVID-19 patients. One of the earlier, in-silico study has shown the binding of the constituents of AYUSH-64 to the main protease (Mpro) of the SARS-CoV-2. This study enlisted four phytochemicals of AYUSH-64, which were found to have significant binding with the Mpro. In continuation to the same, the current study proposes to understand the binding of these four phytochemicals to main protease (Mpro) and receptor binding domain (RBD) of spike protein of the Omicron variant. An enhanced molecular docking methodology, namely, ensemble docking has been used to find the most efficiently binding phytochemical. Using molecular dynamics (MD) simulations and clustering approach it was observed that the Mpro and RBD Spike of Omicron variant of SARS-CoV-2 in complex with human ACE2 tends to attain 4 and 8 conformational respectively. Based on the docking studies, the best binding phytochemical of the AYUSH-64, akummicine N-oxide was selected for MD simulations. MD simulations of akummicine N-oxide bound to omicron variant of Mpro and RBD Spike-ACE complex was performed. The conformational, interaction and binding energy analysis suggested that the akummicine N-oxide binds well with Mpro and RBD Spike-ACE2 complex. The interaction between RBD Spike and ACE2 was observed to weaken in the presence of akummicine N-oxide. Hence, it can be inferred that, these phytochemicals from AYUSH-64 formulation may have the potential to act against the Omicron variant of SARS-CoV-2.

2.
J Ayurveda Integr Med ; 15(3): 100986, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38805854

RESUMO

BACKGROUND: Shyonaka (Oroxylum indicum Vent) is widely used in Ayurveda and in ethnomedical practice for the treatment of inflammation, pain, diarrhea, non-healing ulcers, and cancer. Owing to the high prevalence of Epstein-Barr virus (EBV) infection in Nasopharyngeal carcinoma (NPC) patients, simultaneous targeting of proteins involved in both EBV replication and NPC proliferation might help to manage the disease effectively. OBJECTIVES: This study is designed to identify potential dual targeting inhibitors from Oroxylum indicum having the potential to inhibit both EBV and NPC. This study also attempted quantitative analysis of Shyonaka Bark Decoction (SBD) to confirm the presence of Baicalein and Chrysin which are predominant marker compounds of Shyonaka. METHODOLOGY: The HPLC analysis of stem bark and root bark of Oroxylum indicum was done to estimate the presence of marker compounds Baicalein and Chrysalin. The in-silico analysis included ADMET analysis followed by molecular docking of known compounds from Oroxylum indicum (retrieved from IMPPAT database) onto the target proteins of EBV (BHRF1, NEC1, dUTPase, Uracil DNA glycosylase) and NPC (COX-2, EGFR, and MDM2) using DOCK6 tool. Further validations were done using the molecular dynamics simulations of top screened molecules onto the selected target proteins using AMBER20 package and their corresponding MMGBSA binding free-energy values were calculated. RESULTS: The molecular docking revealed that the key molecules from the plant, scutellarein 7-rutinoside (S7R), scutellarin (SCU) and 6-hydroxyluteolin, Baicalein and 5,7-Dihydroxy-2-phenyl-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromen-4-one (57D) are effectively intervening with the target proteins of EBV, one of the key causative factors of NPC and the NPC specific targets which have the potential to reduce tumor size and other consequences of NPC. The molecular dynamics simulations of S7R, Baicalein and 57D, Baicalein with MDM-2 protein and dUTPase protein, respectively, showed stable interactions between them which were further assessed by the binding energy calculations. CONCLUSION: Overall, the in-silico evaluation of these phytochemicals with target proteins indicates their potential to inhibit both EBV and NPC which needs further in-vitro and in-vivo validations.

3.
RSC Adv ; 13(37): 25778-25796, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37655355

RESUMO

The tRNA3Lys, which acts as a primer for human immunodeficiency virus type 1 (HIV-1) reverse transcription, undergoes structural changes required for the formation of a primer-template complex. Small molecules have been targeted against tRNA3Lys to inhibit the primer-template complex formation. The present study aims to understand the kinetics of the conformational landscape spanned by tRNA3Lys in apo form using molecular dynamics simulations and Markov state modeling. The study is taken further to investigate the effect of small molecules like 1,4T and 1,5T on structural conformations and kinetics of tRNA3Lys, and comparative analysis is presented. Markov state modeling of tRNA3Lys apo resulted in three metastable states where the conformations have shown the non-canonical structures of the anticodon loop. Based on analyses of ligand-tRNA3Lys interactions, crucial ion and water mediated H-bonds and free energy calculations, it was observed that the 1,4-triazole more strongly binds to the tRNA3Lys compared to 1,5-triazole. However, the MSM analysis suggest that the 1,5-triazole binding to tRNA3Lys has brought rigidity not only in the binding pocket (TΨC arm, D-TΨC loop) but also in the whole structure of tRNA3Lys. This may affect the easy opening of primer tRNA3Lys required for HIV-1 reverse transcription.

4.
J Mol Graph Model ; 107: 107945, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34102527

RESUMO

In the present study, five novel LNA based antisense modifications have been proposed. A conformational search was carried out using TANGO, followed by geometry optimization using MOPAC. Based on their electronic energies the most stable conformation for each modification was identified. Further, DFT based full geometry optimization on the most stable conformations at the gas phase B3LYP/6-31G(d,p) using a Gaussian03 and single point energy calculations on the optimized structures at the solvent phase B3LYP/6-311G(d,p) level of theory were done to derive their quantum chemical descriptors using the Gaussian09. A comparison of global reactivity descriptors confirmed that the LNA based modifications were the most reactive. Base-pair stability was recorded by observing the binding energies and base-pairing conformations of modified GC base pairs at the B3LYP/6-311G(d,p) level of theory. Molecular dynamics simulations have been performed at the oligomer duplex level by incorporating individual modifications on 20-mer RNA-RNA duplexes using AMBER16. Free energy calculations of duplex structures suggested that incorporation of A2 modification into the RNA-RNA duplex increased the duplex binding affinity similar to LNA. Whereas, the A3 modification showed less binding compared to LNA but improved binding compared to MOE. This computational approach using quantum chemical methods may be very useful to propose better modifications than the existing ones before performing the experiments in the area of antisense technology.


Assuntos
Oligonucleotídeos , RNA , Teoria da Densidade Funcional , Conformação de Ácido Nucleico
5.
RSC Adv ; 10(45): 26792-26803, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35515752

RESUMO

The efforts towards developing a potential drug against the current global pandemic, COVID-19, have increased in the past few months. Drug development strategies to target the RNA dependent RNA polymerase (RdRP) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) are being tried worldwide. The gene encoding this protein, is known to be conserved amongst positive strand RNA viruses. This enables an avenue to repurpose the drugs designed against earlier reported inhibitors of RdRP. One such strong inhibitor is remdesivir which has been used against EBOLA infections. The binding of remdesivir to RdRP of SARS-CoV-2 has been studied using the classical molecular dynamics and ensemble docking approach. A comparative study of the simulations of RdRP in the apo and remdesivir-bound form revealed blocking of the template entry site in the presence of remdesivir. The conformation changes leading to this event were captured through principal component analysis. The conformational and thermodynamic parameters supported the experimental information available on the involvement of crucial arginine, serine and aspartate residues belonging to the conserved motifs in RdRP functioning. The catalytic site comprising of SER 759, ASP 760, and ASP 761 (SDD) was observed to form strong contacts with remdesivir. The significantly strong interactions of these residues with remdesivir may infer the latter's binding similar to the normal nucleotides thereby remaining unidentified by the exonuclease activity of RdRP. The ensemble docking of remdesivir too, comprehended the involvement of similar residues in interaction with the inhibitor. This information on crucial interactions between conserved residues of RdRP with remdesivir through in silico approaches may be useful in designing inhibitors.

6.
J Comput Chem ; 40(7): 900-909, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30365168

RESUMO

Lead optimization is one of the crucial steps in the drug discovery pipeline. After identifying the lead molecule and obtaining its 2D geometry, understanding the best conformation it would attain in 3D still remains one of the most challenging steps in drug discovery. There have been multiple methods and algorithms that are directed toward achieving best conformation for the lead molecules. TANGO focuses on conformation generation and its optimization using semiempirical energy calculations. The conformation generation is based on torsion angle rotation of the exocyclic bonds. The energy calculations are performed using MOPAC. The unique feature of this tool lies in the implementation of Message Passing Interface (MPI) for conformation generation and semiempirical-based optimization. A well-defined architecture handling the input and output generation has been used. The master and slave approach to handle operations involved in torsion angle rotation and energy calculations has helped in load balancing the process of conformation generation. The benchmarking results suggest that TANGO scales significantly well across eight nodes with each node utilizing 16 cores. This tool may prove to very useful in high throughput generation of semiempirically optimized small molecule conformations. The use of semiempirical methods for optimization generates a conformational ensemble thereby helping to obtain stable and alternate stable conformers for a given ligand molecule. © 2018 Wiley Periodicals, Inc.

7.
J Biomol Struct Dyn ; 37(11): 2823-2836, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30284504

RESUMO

There is an extensive research carrying out on antisense technology and the molecules entering into clinical trials are increasing rapidly. Phosphorothioate (PS) is a chemical modification in which nonbridged oxygen is replaced with a sulfur, consequently providing resistance against nuclease activity. The 2'-4' conformationally restricted nucleoside has the structural features of both 2'-O-methoxy ethyl RNA (MOE), which shows good toxicity profile, and locked nucleic acid (LNA), which shows good binding affinity towards the target RNA. These modifications have been studied and suggested that they can be a potential therapeutic agents in antisense therapy. Mipomersen (ISIS 301012), which contains the novel nucleoside modification has been used to target to apolipoprotein (Apo B), which reduces LDL cholesterol by 6-41%. In this study, classical molecular dynamics (MD) simulations were performed on six different antisense gapmer/target-RNA oligomer duplexes (LNA-PS-LNA/RNA, RcMOE-PS-RcMOE/RNA, ScMOE-PS-ScMOE/RNA, MOE-PS-MOE/RNA, PS-DNA/RNA and DNA/RNA) to investigate the structural dynamics, stability and solvation properties. The LNA, MOE nucleotides present in respective duplexes are showing the structure of A-form and the PS-DNA nucleotides resemble the structure of B-form helix with respect to some of the helical parameters. Free energy calculations suggest that the oligomer, which contains LNA binds to the RNA strongly than other modifications as shown in experimental results. The MOE modified nucleotide, which although had a lower binding affinity but higher solvent accessible surface area (SASA) compared to the other modifications, may be influencing the toxicity and hence may be used it in Mipomersen, the second antisense molecule which is approved by FDA. Communicated by Ramaswamy H. Sarma.


Assuntos
Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico , Oligonucleotídeos/química , RNA Antissenso/química , Humanos , Termodinâmica
8.
Biochim Biophys Acta ; 1849(9): 1209-18, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26170144

RESUMO

Slug, a five C2H2 zinc finger (ZF) motif transcription factor mediates cell migration in development, adult tissue repair and regeneration, as well as during tumor metastases through epithelial to mesenchymal transition. At the molecular level, this involves interactions with E-box (CACC/GGTG) consensus elements within target gene promoters to achieve transcriptional repression. However, precise elucidation of events involved in this DNA recognition and binding of specific promoters to regulate target genes have not been achieved. In the present study, we show that besides transcriptional repression, Slug can also directly activate its own expression by preferential binding to specific E-box elements in the distal binding region of its promoter. Our findings suggest that while the first ZF does not contribute to the transcription-associated functions of Slug, all the remaining four ZFs are involved in regulating the expression of target genes with ZF3 and ZF4 being more crucial than ZF2 or ZF5. We also report that recognition and binding preferences of ZFs are defined through intrinsic differences in the E-box core base pairs and/or flanking sequences, with the S2 E-box element being most critical during autoregulation. However, specific target E-box recognition and binding are also defined by the cellular context, which implies that in silico and/or biochemical DNA binding preferences may not necessarily be able to accurately predict in situ events. Our studies thus constitute a novel understanding of transcriptional regulation.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Fatores de Transcrição/fisiologia , Linhagem Celular Tumoral , Feminino , Regulação da Expressão Gênica/genética , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética
9.
J Biomol Struct Dyn ; 33(2): 234-43, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24404773

RESUMO

Ligand recognition in purine riboswitches is a complex process requiring different levels of conformational changes. Recent efforts in the area of purine riboswitch research have focused on ligand analogue binding studies. In the case of the guanine xanthine phosphoribosyl transferase (xpt) riboswitch, synthetic analogues that resemble guanine have the potential to tightly bind and subsequently influence the genetic expression of xpt mRNA in prokaryotes. We have carried out 25 ns Molecular Dynamics (MD) simulation studies of the aptamer domain of the xpt G-riboswitch in four different states: guanine riboswitch in free form, riboswitch bound with its cognate ligand guanine, and with two guanine analogues SJ1 and SJ2. Our work reveals novel interactions of SJ1 and SJ2 ligands with the binding core residues of the riboswitch. The ligands proposed in this work bind to the riboswitch with greater overall stability and lower root mean square deviations and fluctuations compared to guanine ligand. Reporter gene assay data demonstrate that the ligand analogues, upon binding to the RNA, lower the genetic expression of the guanine riboswitch. Our work has important implications for future ligand design and binding studies in the exciting field of riboswitches.


Assuntos
Guanina/análogos & derivados , Guanina/química , Pentosiltransferases/química , Riboswitch , Aptâmeros de Nucleotídeos/química , Sequência de Bases , Regulação Bacteriana da Expressão Gênica , Genes Reporter , Guanina/fisiologia , Ligação de Hidrogênio , Sequências Repetidas Invertidas , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Pentosiltransferases/genética , Termodinâmica , Ativação Transcricional , beta-Galactosidase/biossíntese , beta-Galactosidase/genética
10.
J Biomol Struct Dyn ; 31(6): 539-60, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22888964

RESUMO

Human immunodeficiency virus type 1 (HIV-1) requires the human tRNA(3)(Lys) as a reverse transcriptase (RT) primer. The annealing of 3' terminal 18 nucleotides of tRNA(3)(Lys) with the primer binding site (PBS) of viral RNA (vRNA) is crucial for reverse transcription. Additional contacts between the A rich (A-loop) region of vRNA and the anticodon domain of tRNA(3)(Lys) are necessary, which show the specific requirement of tRNA(3)(Lys). The importance of modified nucleosides, present in tRNA(3)(Lys), in giving stability to the primer-template complex has been determined in earlier experiments. It has been observed that the PNA oligomer targeted to PBS of vRNA destabilized the crucial interactions between primer and template due to which the reverse transcription is inhibited. Molecular dynamics simulations have been carried out to study the effect of modified nucleosides on the vRNA-tRNA(3)(Lys) complex stability and the destabilization effect of PNA oligomer on the vRNA-tRNA(3)(Lys)-PNA complex. The root-mean-square deviation, hydrogen bonding, tertiary interactions, and free energy calculations of the simulation data support the experimental results. The analyses have revealed the structural changes in PBS region of vRNA which might be another strong reason for the inability of RT binding to 7F helix for its normal functioning of reverse transcription.


Assuntos
Primers do DNA/química , Transcriptase Reversa do HIV/química , HIV-1/metabolismo , Simulação de Dinâmica Molecular , Anticódon/química , Sítios de Ligação , Primers do DNA/metabolismo , Transcriptase Reversa do HIV/metabolismo , HIV-1/química , Humanos , Ligação de Hidrogênio , Conformação de Ácido Nucleico , RNA de Transferência/química , RNA de Transferência/metabolismo , RNA de Transferência de Lisina/genética , RNA de Transferência de Lisina/metabolismo , RNA Viral/química , RNA Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...