Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(24): 25101-25117, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38052014

RESUMO

It is critical to understand the laws of quantum mechanics in transformative technologies for computation and quantum information science applications to enable the ongoing second quantum revolution calls. Recently, spin qubits based on point defects have gained great attention, since these qubits can be initiated, selectively controlled, and read out with high precision at ambient temperature. The major challenge in these systems is controllably generating multiqubit systems while properly coupling the defects. To address this issue, we began by tackling the engineering challenges these systems present and understanding the fundamentals of defects. In this regard, we controllably generate defects in MoS2 and WS2 monolayers and tune their physicochemical properties via proton irradiation. We quantitatively discovered that the proton energy could modulate the defects' density and nature; higher defect densities were seen with lower proton irradiation energies. Three distinct defect types were observed: vacancies, antisites, and adatoms. In particular, the creation and manipulation of antisite defects provides an alternative way to create and pattern spin qubits based on point defects. Our results demonstrate that altering the particle irradiation energy can regulate the formation of defects, which can be utilized to modify the properties of 2D materials and create reliable electronic devices.

2.
J Colloid Interface Sci ; 581(Pt B): 847-859, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32818685

RESUMO

The development of efficient electrocatalysts for hydrogen generation is an essential task to meet future energy demand. In recent years, molybdenum ditelluride (MoTe2) has triggered incredible research interests due to intrinsic nontrivial band gap with promising semi-metallic behaviors. In this work, 2D MoTe2 nanosheets have been synthesized uniformly on graphene substrate through ultra-fast microwave-initiated approach, that shows a superior hydrogen evolution in acidic medium with low overpotential (~150 mV), low activation energy (8.4362 ± 1.5413 kJ mol-1), along with a Tafel slope of 94.5 mV/decade. Interestingly, MoTe2/graphene exhibits the enhanced electrocatalytic stability during the long cycling test, resulting an increase in specific surface area of catalyst materials. Moreover, the results from periodic plane-wave density functional theory (DFT) indicate that, the best active sites are the corner of a Mo-atom and a critical bifunctional site comprised of adjacent Mo and Te edge atoms. Furthermore, the corresponding volcano plot reveals the near thermoneutral catalytic activity of MoTe2/graphene for hydrogen generation.

3.
Sensors (Basel) ; 18(10)2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30301181

RESUMO

Few studies have investigated the gas-sensing properties of graphene oxide/titanium dioxide (GO/TiO2) composite combined with photocatalytic effect. Room temperature gas-sensing properties of the GO/TiO2 composite were investigated towards various reducing gases. The composite sensor showed an enhanced gas response and a faster recovery time than a pure GO sensor due to the synergistic effect of the hybridization, such as creation of a hetero-junction at the interface and modulation of charge carrier density. However, the issue of long-term stability at room temperature still remains unsolved even after construction of a composite structure. To address this issue, the surface and hetero-junction of the GO/TiO2 composite were engineered via a UV process. A photocatalytic effect of TiO2 induced the reduction of the GO phase in the composite solution. The comparison of gas-sensing properties before and after the UV process clearly showed the transition from n-type to p-type gas-sensing behavior toward reducing gases. This transition revealed that the dominant sensing material is GO, and TiO2 enhanced the gas reaction by providing more reactive sites. With a UV-treated composite sensor, the function of identifying target gas was maintained over a one-month period, showing strong resistance to humidity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...