Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 28(9): 094001, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26871646

RESUMO

Upon charge carrier transport behaviors of high-mobility organic field effect transistors of pentacene single crystal, effects of ambient gases and resultant probable 'impurities' at the crystal surface have been controversial. Definite knowledge on the surface stoichiometry and chemical composites is indispensable to solve this question. In the present study, high-resolution x-ray photoelectron spectroscopy (XPS) measurements on the pentacene single crystal samples successfully demonstrated a presence of a few atomic-percent of (photo-)oxidized species at the first molecular layer of the crystal surface through accurate analyses of the excitation energy (i.e. probing depth) dependence of the C1s peak profiles. Particular methodologies to conduct XPS on organic single crystal samples, without any charging nor damage of the sample in spite of its electric insulating character and fragility against x-ray irradiation, is also described in detail.

2.
ACS Nano ; 7(11): 10245-56, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24175573

RESUMO

We have examined the significant enhancement of ambipolar charge injection and transport properties of bottom-contact single crystal field-effect transistors (SC-FETs) based on a new rubrene derivative, bis(trifluoromethyl)-dimethyl-rubrene (fm-rubrene), by employing carbon nanotube (CNT) electrodes. The fundamental challenge associated with fm-rubrene crystals is their deep-lying HOMO and LUMO energy levels, resulting in inefficient hole injection and suboptimal electron injection from conventional Au electrodes due to large Schottky barriers. Applying thin layers of CNT network at the charge injection interface of fm-rubrene crystals substantially reduces the contact resistance for both holes and electrons; consequently, benchmark ambipolar mobilities have been achieved, reaching 4.8 cm(2) V(-1) s(-1) for hole transport and 4.2 cm(2) V(-1) s(-1) for electron transport. We find that such improved injection efficiency in fm-rubrene is beneficial for ultimately unveiling its intrinsic charge transport properties so as to exceed those of its parent molecule, rubrene, in the current device architecture. Our studies suggest that CNT electrodes may provide a universal approach to ameliorate the charge injection obstacles in organic electronic devices regardless of charge carrier type, likely due to the electric field enhancement along the nanotube located at the crystal/electrode interface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...