Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(44): E9413-E9422, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29078332

RESUMO

Here we present the genome sequence and annotation of the wild olive tree (Olea europaea var. sylvestris), called oleaster, which is considered an ancestor of cultivated olive trees. More than 50,000 protein-coding genes were predicted, a majority of which could be anchored to 23 pseudochromosomes obtained through a newly constructed genetic map. The oleaster genome contains signatures of two Oleaceae lineage-specific paleopolyploidy events, dated at ∼28 and ∼59 Mya. These events contributed to the expansion and neofunctionalization of genes and gene families that play important roles in oil biosynthesis. The functional divergence of oil biosynthesis pathway genes, such as FAD2, SACPD, EAR, and ACPTE, following duplication, has been responsible for the differential accumulation of oleic and linoleic acids produced in olive compared with sesame, a closely related oil crop. Duplicated oleaster FAD2 genes are regulated by an siRNA derived from a transposable element-rich region, leading to suppressed levels of FAD2 gene expression. Additionally, neofunctionalization of members of the SACPD gene family has led to increased expression of SACPD2, 3, 5, and 7, consequently resulting in an increased desaturation of steric acid. Taken together, decreased FAD2 expression and increased SACPD expression likely explain the accumulation of exceptionally high levels of oleic acid in olive. The oleaster genome thus provides important insights into the evolution of oil biosynthesis and will be a valuable resource for oil crop genomics.


Assuntos
Vias Biossintéticas/genética , Genoma de Planta/genética , Óleos/metabolismo , Olea/genética , Evolução Biológica , Ácidos Graxos Dessaturases/genética , Expressão Gênica/genética , Ácidos Linoleicos/genética , Olea/metabolismo , Ácido Oleico/genética , RNA Interferente Pequeno/genética
2.
Funct Integr Genomics ; 16(3): 221-33, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26141043

RESUMO

MicroRNAs (miRNAs) are a class of small non-coding regulatory RNAs that regulate gene expression by guiding target mRNA cleavage or translational inhibition. Drought is a common environmental stress influencing crop growth and development. To date, it has been reported that a number of plant miRNA are involved in drought stress response. In this study, we comparatively investigated drought stress-responsive miRNAs in the root and leaf of bread wheat (Triticum aestivum cv. Sivas 111/33) by miRNA microarray screening. miRNA microarray analysis showed that 285 miRNAs (207 upregulated and 78 downregulated) and 244 miRNAs (115 upregulated and 129 downregulated) were differentially expressed in leaf and root tissues, respectively. Among the differentially expressed miRNAs, 23 miRNAs were only expressed in the leaf and 26 miRNAs were only expressed in the root of wheat growth under drought stress. Upon drought treatment, expression of miR159, miR160, miR166, miR169, miR172, miR395, miR396, miR408, miR472, miR477, miR482, miR1858, miR2118, and miR5049 were found to be significantly differentiated in bread wheat. The regulatory network analysis showed that miR395 has connections with a number of target transcripts, and miR159 and miR319 share a number of target genes. Drought-tolerant and drought-sensitive wheat cultivars showed altered expression pattern upon drought stress in terms of investigated miRNA and their target transcript expression level.


Assuntos
Secas , MicroRNAs/genética , Estresse Fisiológico/genética , Triticum/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/biossíntese , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento
3.
PLoS One ; 7(12): e50298, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23227166

RESUMO

Peach (Prunus persica L.) is one of the most important worldwide fresh fruits. Since fruit growth largely depends on adequate water supply, drought stress is considered as the most important abiotic stress limiting fleshy fruit production and quality in peach. Plant responses to drought stress are regulated both at transcriptional and post-transcriptional level. As post-transcriptional gene regulators, miRNAs (miRNAs) are small (19-25 nucleotides in length), endogenous, non-coding RNAs. Recent studies indicate that miRNAs are involved in plant responses to drought. Therefore, Illumina deep sequencing technology was used for genome-wide identification of miRNAs and their expression profile in response to drought in peach. In this study, four sRNA libraries were constructed from leaf control (LC), leaf stress (LS), root control (RC) and root stress (RS) samples. We identified a total of 531, 471, 535 and 487 known mature miRNAs in LC, LS, RC and RS libraries, respectively. The expression level of 262 (104 up-regulated, 158 down-regulated) of the 453 miRNAs changed significantly in leaf tissue, whereas 368 (221 up-regulated, 147 down-regulated) of the 465 miRNAs had expression levels that changed significantly in root tissue upon drought stress. Additionally, a total of 197, 221, 238 and 265 novel miRNA precursor candidates were identified from LC, LS, RC and RS libraries, respectively. Target transcripts (137 for LC, 133 for LS, 148 for RC and 153 for RS) generated significant Gene Ontology (GO) terms related to DNA binding and catalytic activities. Genome-wide miRNA expression analysis of peach by deep sequencing approach helped to expand our understanding of miRNA function in response to drought stress in peach and Rosaceae. A set of differentially expressed miRNAs could pave the way for developing new strategies to alleviate the adverse effects of drought stress on plant growth and development.


Assuntos
Adaptação Fisiológica , Secas , MicroRNAs/genética , Prunus/genética , Sequência de Bases , Sequenciamento de Nucleotídeos em Larga Escala , Prunus/fisiologia , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...