Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Neurosci ; 58(4): 2985-3002, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37525529

RESUMO

Huntington's disease (HD) is a progressive and irreversible neurodegenerative disease leading to the inability to carry out daily activities and for which no cure exists. The underlying mechanisms of the disease have not been fully elucidated yet. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) allows the spatial information of proteins to be obtained upon the tissue sections without homogenisation. In this study, we aimed to examine proteomic alterations in the brain tissue of an HD mouse model with MALDI-MSI coupled to LC-MS/MS system. We used 3-, 6- and 12-month-old YAC128 mice representing pre-stage, mild stage and pathological stage of the HD and their non-transgenic littermates, respectively. The intensity levels of 89 proteins were found to be significantly different in YAC128 in comparison to their control mice in the pre-stage, 83 proteins in the mild stage, and 82 proteins in the pathological stage. Among them, Tau, EF2, HSP70, and NogoA proteins were validated with western blot analysis. In conclusion, the results of this study have provided remarkable new information about the spatial proteomic alterations in the HD mouse model, and we suggest that MALDI-MSI is an excellent technique for identifying such regional proteomic changes and could offer new perspectives in examining complex diseases.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Camundongos , Animais , Doença de Huntington/diagnóstico por imagem , Doença de Huntington/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Proteômica , Cromatografia Líquida , Espectrometria de Massas em Tandem , Modelos Animais de Doenças , Lasers
2.
Alzheimers Dement ; 19(10): 4572-4589, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36934297

RESUMO

Alzheimer's disease (AD) is a debilitating neurodegenerative disorder, characterized by memory deficit and dementia. AD is considered a multifactorial disorder where multiple processes like amyloid-beta and tau accumulation, axonal degeneration, synaptic plasticity, and autophagic processes plays an important role. In this study, the spatial proteomic differences in the neonatal 5xFAD brain tissue were investigated using MALDI-MSI coupled to LC-MS/MS, and the statistically significantly altered proteins were associated with AD. Thirty-five differentially expressed proteins (DEPs) between the brain tissues of neonatal 5xFAD and their littermate mice were detected via MALDI-MSI technique. Among the 35 proteins identified, 26 of them were directly associated with AD. Our results indicated a remarkable resemblance in the protein expression profiles of neonatal 5xFAD brain when compared to AD patient specimens or AD mouse models. These findings showed that the molecular alterations in the AD brain existed even at birth and that some proteins are neurodegenerative presages in neonatal AD brain. HIGHLIGHTS: Spatial proteomic alterations in the 5xFAD mouse brain compared to the littermate. 26 out of 35 differentially expressed proteins associated with Alzheimer's disease (AD). Molecular alterations and neurodegenerative presages in neonatal AD brain. Alterations in the synaptic function an early and common neurobiological thread.


Assuntos
Doença de Alzheimer , Camundongos , Humanos , Animais , Doença de Alzheimer/metabolismo , Animais Recém-Nascidos , Camundongos Transgênicos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Proteômica , Cromatografia Líquida , Espectrometria de Massas em Tandem , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças
3.
Mol Omics ; 18(4): 336-347, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35129568

RESUMO

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder that occurs with the increase of CAG trinucleotide repeats in the huntingtin gene. To understand the mechanisms of HD, powerful proteomics techniques, such as liquid chromatography-tandem mass spectrometry (LC-MS/MS) were employed. However, one major drawback of these methods is loss of the region-specific quantitative information of the proteins due to analysis of total tissue lysates. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a MS-based label-free technique that works directly on tissue sections and gathers m/z values with their respective regional information. In this study, we established a data processing protocol that includes several software programs and methods to determine spatial protein alterations between the brain samples of a 12 month-old YAC128 HD mouse model and their non-transgenic littermates. 22 differentially expressed proteins were revealed with their respective regional information, and possible relationships of several proteins were discussed. As a validation of the MALDI-MSI analysis, a differentially expressed protein (GFAP) was verified using immunohistochemical staining. Furthermore, since several proteins detected in this study have previously been associated with neuronal loss, neuronal loss in the cortical region was demonstrated using an anti-NeuN immunohistochemical staining method. In conclusion, the findings of this research have provided insights into the spatial proteomic changes between HD transgenic and non-transgenic littermates and therefore, we suggest that MALDI-MSI is a powerful technique to determine spatial proteomic alterations between biological samples, and the data processing that we present here can be employed as a complementary tool for the data analysis.


Assuntos
Doença de Huntington , Animais , Encéfalo/metabolismo , Cromatografia Líquida , Doença de Huntington/diagnóstico por imagem , Doença de Huntington/genética , Doença de Huntington/metabolismo , Camundongos , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...