Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetologia ; 48(12): 2563-6, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16283243

RESUMO

AIMS/HYPOTHESIS: The beta cell metabolism of glucose, and some other fuels, initiates insulin secretion by closure of ATP-sensitive K+ channels and amplifies the secretory response via unknown metabolic intermediates. The aim of this study was to further characterise the mechanism responsible for the metabolic amplification of insulin secretion. MATERIALS AND METHODS: Pancreatic islets were isolated from albino mice by collagenase digestion. Insulin secretion in perifused islets was determined by ELISA. Bioluminometry was used to determine the ATP and ADP content of the incubated islets. RESULTS: After perifusing islets for 60 min with 2.7 micromol/l glipizide (closing all ATP-sensitive K+ channels) in the absence of any fuel, perifusion with a test medium containing 2.7 micromol/l glipizide plus 30 mmol/l glucose did not enhance insulin secretion. However, test media supplemented with 2.7 micromol/l glipizide plus either 10 mmol/l alpha-ketoisocaproate or 10 mmol/l 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid amplified the glipizide-induced insulin secretion. In pancreatic islets preincubated for 60 min with 2.7 micromol/l glipizide in the absence of any fuel, 40 min incubations in the presence of 2.7 micromol/l glipizide plus 30 mmol/l glucose or plus 10 mmol/l alpha-ketoisocaproate produced an increase in the ATP content, no change in the ADP content and a rather small increase in the ATP:ADP ratio. The corresponding effects of glucose and alpha-ketoisocaproate were similar. CONCLUSIONS/INTERPRETATION: These results suggest that metabolic amplification of fuel-induced insulin secretion is not mediated by changes in the beta cell content of ATP and ADP, but might be due to export of citrate cycle intermediates to the beta cell cytosol.


Assuntos
Glipizida/farmacologia , Glucose/farmacologia , Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Difosfato de Adenosina/análise , Trifosfato de Adenosina/análise , Aminoácidos Cíclicos/farmacologia , Animais , Citratos/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/química , Dinitrato de Isossorbida/metabolismo , Cetoácidos/farmacologia , Masculino , Camundongos , Camundongos Mutantes , Mitocôndrias/metabolismo , Succinatos/farmacologia
2.
Biochim Biophys Acta ; 600(1): 117-25, 1980 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-6156699

RESUMO

Maximal release of trapped liposomal glucose, in the presence of saturating amounts of liposomal antigen (galactocerebroside), antiserum (anti-galactocerebroside), and complement, was dependent on temperature. At lower temperatures (20--25 degrees C), maximal glucose release was inversely related to liposomal phospholipid fatty acyl chain length (dimyristoyl phosphatidylcholine > dipalmitoyl phosphatidylcholine > distearoyl phosphatidylcholine > sphingomyelin). At higher temperatures (32--35 degrees C) a limiting plateau of glucose release, at approx. 60%, was reached, or approached, by all preparations. Sphingomyelin liposomes still released less glucose than those prepared from other phospholipids, even at 35 degrees C. The titers of antiserum and complement (ABL50/ml and CL50/ml) were dependent on temperature, and differences based on liposomal phospholipid fatty acyl chain length were observed. Analysis of antiserum and complement-dependence on temperature, and on phospholipid type, revealed that although antibody binding to galactocerebroside undoubtedly was subject to steric hindrance due to interference by surrounding phospholipids at 20--25 degrees C, steric hindrance did not play a major role in blocking antibody binding above 32 degrees C.


Assuntos
Proteínas do Sistema Complemento/imunologia , Glucose/metabolismo , Lipossomos/imunologia , Temperatura , Anticorpos , Colesterol/metabolismo , Citotoxicidade Imunológica , Epitopos , Galactosilceramidas/imunologia , Lipossomos/metabolismo , Esfingomielinas/metabolismo
3.
Proc Natl Acad Sci U S A ; 77(4): 1986-90, 1980 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-6929533

RESUMO

Diphtheria toxin bound to the phosphate portion of some, but not all, phospholipids in liposomes. Liposomes consisting of dimyristoyl phosphatidylcholine and cholesterol did not bind toxin. Addition of 20 mol% (compared to dimyristoyl phosphatidylcholine) of dipalmitoyl phosphatidic acid, dicetyl phosphate, phosphatidylinositol phosphate, cardiolipin, or phosphatidylserine in the liposomes resulted in substantial binding of toxin. Inclusion of phosphatidylinositol in dimyristol phosphatidylcholine/cholesterol liposomes did not result in toxin binding. The calcium salt of dipalmitoyl phosphatidic acid was more effective than the sodium salt, and the highest level of binding occurred with liposomes consisting only of dipalmitoyl phosphatidic acid (calcium salt) and cholesterol. Binding of toxin to liposomes was dependent on pH, and the pattern of pH dependence varied with liposomes having different compositions. Incubation of diphtheria toxin with liposomes containing dicetyl phosphate resulted in maximal binding at pH 3.6, whereas binding to liposomes containing phosphatidylinositol phosphate was maximal above pH 7. Toxin did not bind to liposomes containing 20 mol% of a free fatty acid (palmitic acid) or a sulfated lipid (3-sulfogalactosylceramide). Toxin binding to dicetyl phosphate or phosphatidylinositol phosphate was inhibited by UTP, ATP, phosphocholine, or p-nitrophenyl phosphate, but not by uracil. We conclude that (a) diphtheria toxin binds specifically to the phosphate portion of certain phospholipids, (b) binding to phospholipids in liposomes is dependent on pH, but is not due only to electrostatic interaction, and (c) binding may be strongly influenced by the composition of adjacent phospholipids that do not bind toxin. We propose that a minor membrane phospholipid (such as phosphatidylinositol phosphate or phosphatidic acid), or that some other phosphorylated membrane molecule (such as a phosphoprotein) may be important in the initial binding of diphtheria toxin to cells.


Assuntos
Toxina Diftérica/metabolismo , Organofosfatos , Compostos Organofosforados/metabolismo , Fosfolipídeos/metabolismo , Cardiolipinas/metabolismo , Colesterol/metabolismo , Concentração de Íons de Hidrogênio , Lipossomos , Nucleotídeos/farmacologia , Fosfatos/metabolismo , Fosfatidilcolinas/metabolismo , Receptores de Droga/metabolismo , Relação Estrutura-Atividade
4.
Biochim Biophys Acta ; 551(1): 224-8, 1979 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-427152

RESUMO

Tetanolysin caused membrane damage, resulting in release of trapped glucose from liposomes containing cholesterol. Maximum glucose release occurred from liposomes that contained 50 mol% cholesterol. At higher or lower levels of cholesterol, glucose release was reduced and glucose release did not occur at all below 40 mol% cholesterol. The apparent activity of tetanolysin was not influenced by temperature (24 degrees C compared to 32 degrees C) or by liposomal phospholipid fatty acyl chain length. We conclude that tetanolysin caused cholesterol-dependent lysin-mediated damage to liposomes, possibly by means of a pore consisting of a complex of toxin and cholesterol.


Assuntos
Toxinas Bacterianas/isolamento & purificação , Colesterol , Lipossomos , Clostridium , Glucose , Cinética , Fosfolipídeos , Toxina Tetânica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...