Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Cells ; 11(24)2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36552811

RESUMO

Motile cilia and eukaryotic flagella are specific cell protrusions that are conserved from protists to humans. They are supported by a skeleton composed of uniquely organized microtubules-nine peripheral doublets and two central singlets (9 × 2 + 2). Microtubules also serve as docking sites for periodically distributed multiprotein ciliary complexes. Radial spokes, the T-shaped ciliary complexes, repeat along the outer doublets as triplets and transduce the regulatory signals from the cilium center to the outer doublet-docked dynein arms. Using the genetic, proteomic, and microscopic approaches, we have shown that lack of Tetrahymena Cfap91 protein affects stable docking/positioning of the radial spoke RS3 and the base of RS2, and adjacent inner dynein arms, possibly due to the ability of Cfap91 to interact with a molecular ruler protein, Ccdc39. The localization studies confirmed that the level of RS3-specific proteins, Cfap61 and Cfap251, as well as RS2-associated Cfap206, are significantly diminished in Tetrahymena CFAP91-KO cells. Cilia of Tetrahymena cells with knocked-out CFAP91 beat in an uncoordinated manner and their beating frequency is dramatically reduced. Consequently, CFAP91-KO cells swam about a hundred times slower than wild-type cells. We concluded that Tetrahymena Cfap91 localizes at the base of radial spokes RS2 and RS3 and likely plays a role in the radial spoke(s) positioning and stability.


Assuntos
Cílios , Tetrahymena , Axonema/metabolismo , Cílios/metabolismo , Dineínas , Proteômica , Tetrahymena/metabolismo
2.
J Cell Physiol ; 233(11): 8648-8665, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29761930

RESUMO

The mechanisms that regulate γ-tubulin, including its post-translational modifications, are poorly understood. γ-Tubulin is important for the duplication of centrioles and structurally similar basal bodies (BBs), organelles which contain a ring of nine triplet microtubules. The ciliate Tetrahymena thermophila carries hundreds of cilia in a single cell and provides an excellent model to specifically address the role of γ-tubulin in the BBs assembly and maintenance. The genome of Tetrahymena contains a single γ-tubulin gene. We show here that there are multiple isoforms of γ-tubulin that are likely generated by post-translational modifications. We identified evolutionarily conserved serine and threonine residues as potential phosphosites of γ-tubulin, including S80, S129, S131, T283, and S360. Several mutations that either prevent (S80A, S131A, T283A, S360A) or mimic (T283D) phosphorylation were conditionally lethal and at a higher temperature phenocopied a loss of γ-tubulin. Cells that overproduced S360D γ-tubulin displayed phenotypes consistent with defects in the microtubule-dependent functions, including an asymmetric division of the macronucleus and abnormalities in the pattern of BB rows, including gaps, fragmentation, and misalignment. In contrast, overexpression of S129D γ-tubulin affected the orientation, docking, and structure of the BBs, including a loss of either the B- or C-subfibers or the entire triplets. We conclude that conserved potentially phosphorylated amino acids of γ-tubulin are important for either the assembly or stability of BBs.


Assuntos
Sequência de Aminoácidos/genética , Corpos Basais/metabolismo , Tetrahymena thermophila/genética , Tubulina (Proteína)/genética , Animais , Centríolos/genética , Cílios/genética , Genoma/genética , Microtúbulos/genética , Fosforilação , Serina/genética , Treonina/genética
3.
Cell Mol Life Sci ; 75(24): 4479-4493, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29687140

RESUMO

Cilia beating is powered by the inner and outer dynein arms (IDAs and ODAs). These multi-subunit macrocomplexes are arranged in two rows on each outer doublet along the entire cilium length, except its distal end. To generate cilia beating, the activity of ODAs and IDAs must be strictly regulated locally by interactions with the dynein arm-associated structures within each ciliary unit and coordinated globally in time and space between doublets and along the axoneme. Here, we provide evidence of a novel ciliary complex composed of two conserved WD-repeat proteins, Fap43p and Fap44p. This complex is adjacent to another WD-repeat protein, Fap57p, and most likely the two-headed inner dynein arm, IDA I1. Loss of either protein results in altered waveform, beat stroke and reduced swimming speed. The ciliary localization of Fap43p and Fap44p is interdependent in the ciliate Tetrahymena thermophila.


Assuntos
Chlamydomonas/metabolismo , Flagelos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Protozoários/metabolismo , Tetrahymena/metabolismo , Chlamydomonas/genética , Cílios/genética , Cílios/metabolismo , Flagelos/genética , Deleção de Genes , Técnicas de Inativação de Genes , Humanos , Mutação , Filogenia , Proteínas de Plantas/análise , Proteínas de Plantas/genética , Mapas de Interação de Proteínas , Proteínas de Protozoários/análise , Proteínas de Protozoários/genética , Tetrahymena/genética , Repetições WD40
4.
Mol Biol Cell ; 29(9): 1048-1059, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29514928

RESUMO

Motile cilia are essential for propelling cells and moving fluids across tissues. The activity of axonemal dynein motors must be precisely coordinated to generate ciliary motility, but their regulatory mechanisms are not well understood. The tether and tether head (T/TH) complex was hypothesized to provide mechanical feedback during ciliary beating because it links the motor domains of the regulatory I1 dynein to the ciliary doublet microtubule. Combining genetic and biochemical approaches with cryoelectron tomography, we identified FAP44 and FAP43 (plus the algae-specific, FAP43-redundant FAP244) as T/TH components. WT-mutant comparisons revealed that the heterodimeric T/TH complex is required for the positional stability of the I1 dynein motor domains, stable anchoring of CK1 kinase, and proper phosphorylation of the regulatory IC138-subunit. T/TH also interacts with inner dynein arm d and radial spoke 3, another important motility regulator. The T/TH complex is a conserved regulator of I1 dynein and plays an important role in the signaling pathway that is critical for normal ciliary motility.


Assuntos
Dineínas do Axonema/metabolismo , Dineínas do Axonema/fisiologia , Cílios/metabolismo , Animais , Axonema/metabolismo , Chlamydomonas reinhardtii/metabolismo , Cílios/fisiologia , Citoesqueleto/metabolismo , Dineínas/metabolismo , Flagelos/metabolismo , Microtúbulos/metabolismo , Transdução de Sinais , Tetrahymena/genética , Tetrahymena/metabolismo
5.
Mol Biol Cell ; 26(8): 1463-75, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25694453

RESUMO

Dynein motors and regulatory complexes repeat every 96 nm along the length of motile cilia. Each repeat contains three radial spokes, RS1, RS2, and RS3, which transduct signals between the central microtubules and dynein arms. Each radial spoke has a distinct structure, but little is known about the mechanisms of assembly and function of the individual radial spokes. In Chlamydomonas, calmodulin and spoke-associated complex (CSC) is composed of FAP61, FAP91, and FAP251 and has been linked to the base of RS2 and RS3. We show that in Tetrahymena, loss of either FAP61 or FAP251 reduces cell swimming and affects the ciliary waveform and that RS3 is either missing or incomplete, whereas RS1 and RS2 are unaffected. Specifically, FAP251-null cilia lack an arch-like density at the RS3 base, whereas FAP61-null cilia lack an adjacent portion of the RS3 stem region. This suggests that the CSC proteins are crucial for stable and functional assembly of RS3 and that RS3 and the CSC are important for ciliary motility.


Assuntos
Axonema/metabolismo , Cílios/metabolismo , Proteínas de Protozoários/fisiologia , Axonema/ultraestrutura , Cílios/ultraestrutura , Microscopia Eletrônica de Transmissão , Tetrahymena/metabolismo , Tetrahymena/ultraestrutura
6.
Mol Biol Cell ; 26(4): 696-710, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25540426

RESUMO

Radial spokes are conserved macromolecular complexes that are essential for ciliary motility. A triplet of three radial spokes, RS1, RS2, and RS3, repeats every 96 nm along the doublet microtubules. Each spoke has a distinct base that docks to the doublet and is linked to different inner dynein arms. Little is known about the assembly and functions of individual radial spokes. A knockout of the conserved ciliary protein FAP206 in the ciliate Tetrahymena resulted in slow cell motility. Cryo-electron tomography showed that in the absence of FAP206, the 96-nm repeats lacked RS2 and dynein c. Occasionally, RS2 assembled but lacked both the front prong of its microtubule base and dynein c, whose tail is attached to the front prong. Overexpressed GFP-FAP206 decorated nonciliary microtubules in vivo. Thus FAP206 is likely part of the front prong and docks RS2 and dynein c to the microtubule.


Assuntos
Axonema/metabolismo , Dineínas/metabolismo , Microtúbulos/metabolismo , Proteínas de Protozoários/fisiologia , Tetrahymena/metabolismo , Cílios/metabolismo , Cílios/fisiologia , Tomografia com Microscopia Eletrônica , Técnicas de Inativação de Genes , Microtúbulos/ultraestrutura , Modelos Moleculares , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Tetrahymena/genética , Tetrahymena/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...