Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chromatogr A ; 1715: 464611, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38181629

RESUMO

Hydroxy acids (HAs) are ubiquitous in nature and play significant roles in various industrial and biological processes. Most HAs harbor at least one chiral center, therefore the development of efficient chiral analysis techniques for HA stereoisomers is of crucial importance across a wide range of fields. A capillary electrophoresis (CE) method was developed for the chiral analysis and quantification of aliphatic and aromatic α­hydroxy acid (AHA) enantiomers, aliphatic ß­hydroxy acid (BHA) enantiomers and aliphatic polyhydroxy acid (PHA) stereoisomers. Using a modified partial filling-counter current method with indirect UV detection, high resolution (Rs) was achieved with vancomycin as a chiral selector added to the background electrolyte composed of 10 mM of benzoic acid/L-histidine at pH 5 using a polyacrylamide-coated capillary. This method could be readily applied to the determination of the enantiomers of 12 aliphatic AHAs, 4 aromatic AHAs, 3 aliphatic BHAs, as well as to the determination of the stereoisomers of tartaric acid, 2,3-dihydroxybutanoic acid, 2,3,4,5-tetrahydroxypentanoic acid, and 2,3,4,5,6-pentahydroxyhexanoic acid without the need for sample derivatization. Finally, our study provides a robust and versatile strategy for the chiral and stereoselective analysis of a broad range of hydroxy acid compounds.


Assuntos
Hidroxiácidos , Vancomicina , Vancomicina/química , Eletroforese Capilar/métodos , Estereoisomerismo
2.
Biometals ; 36(2): 303-313, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35182264

RESUMO

The LarA superfamily consists of nickel-dependent enzymes catalyzing racemization/epimerization reactions using a variety of α-hydroxy acids. The first-characterized LarA, a lactate racemase from Lactobacillus plantarum, led to the discovery of the nickel-pincer nucleotide (NPN) cofactor that is utilized by family members with alternative substrates, including malate racemase from Thermoanaerobacterium thermosaccharolyticum (Mar2). In this work, a higher resolution crystal structure of Mar2 was obtained with better data quality that revealed new structural and dynamic characteristics of the protein. A model of the Mar2 structure with bound cofactor and substrate was generated to uncover the common and the unique features among two distinct subgroups in the LarA superfamily. In addition, structure-guided mutational studies were used to examine the importance of residues that are modeled to interact with NPN and to explore which residues were critical for conferring specificity for malate. In particular, substitution of two residues involved in substrate binding in Mar2 to match the corresponding residues in LarA led to the acquisition of low levels of lactate racemase activity. Of additional interest, the substrate spectrum was expanded to include tartrate, an analog of malate. These new findings will help to better understand structure-function relationships of many other LarA homologs that are broadly distributed in bacterial and archaeal species.


Assuntos
Malatos , Níquel , Níquel/química , Racemases e Epimerases/genética , Proteínas de Bactérias/metabolismo
3.
Sci Rep ; 10(1): 18123, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093595

RESUMO

Isomerization reactions are fundamental in biology. Lactate racemase, which isomerizes L- and D-lactate, is composed of the LarA protein and a nickel-containing cofactor, the nickel-pincer nucleotide (NPN). In this study, we show that LarA is part of a superfamily containing many different enzymes. We overexpressed and purified 13 lactate racemase homologs, incorporated the NPN cofactor, and assayed the isomerization of different substrates guided by gene context analysis. We discovered two malate racemases, one phenyllactate racemase, one α-hydroxyglutarate racemase, two D-gluconate 2-epimerases, and one short-chain aliphatic α-hydroxyacid racemase among the tested enzymes. We solved the structure of a malate racemase apoprotein and used it, along with the previously described structures of lactate racemase holoprotein and D-gluconate epimerase apoprotein, to identify key residues involved in substrate binding. This study demonstrates that the NPN cofactor is used by a diverse superfamily of α-hydroxyacid racemases and epimerases, widely expanding the scope of NPN-dependent enzymes.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Hidroxiácidos/química , Níquel/metabolismo , Nucleotídeos/metabolismo , Racemases e Epimerases/metabolismo , Proteínas de Bactérias/química , Cristalografia por Raios X , Modelos Moleculares , Níquel/química , Nucleotídeos/química , Conformação Proteica , Racemases e Epimerases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...