Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Infect Dis ; 3(2): 119-131, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28183182

RESUMO

Mutational changes in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) have been associated with differential responses to a wide spectrum of biologically active compounds including current and former quinoline and quinoline-like antimalarial drugs. PfCRT confers altered drug responsiveness by acting as a transport system, expelling drugs from the parasite's digestive vacuole where these drugs exert, at least part of, their antiplasmodial activity. To preserve the efficacy of these invaluable drugs, novel functional tools are required for epidemiological surveys of parasite strains carrying mutant PfCRT variants and for drug development programs aimed at inhibiting or circumventing the action of PfCRT. Here we report the synthesis and characterization of a pH-sensitive fluorescent chloroquine analogue consisting of 7-chloro-N-{2-[(propan-2-yl)amino]ethyl}quinolin-4-amine functionalized with the fluorochrome 7-nitrobenzofurazan (NBD) (henceforth termed Fluo-CQ). In the parasite, Fluo-CQ accumulates in the digestive vacuole, giving rise to a strong fluorescence signal but only in parasites carrying the wild type PfCRT. In parasites carrying the mutant PfCRT, Fluo-CQ does not accumulate. The differential handling of the fluorescent probe, combined with live cell imaging, provides a diagnostic tool for quick detection of those P. falciparum strains that carry a PfCRT variant associated with altered responsiveness to quinoline and quinoline-like antimalarial drugs. In contrast to the accumulation studies, chloroquine (CQ)-resistant parasites were observed cross-resistant to Fluo-CQ when the chemical probe was tested in various CQ-sensitive and -resistant parasite strains. NBD derivatives were found to act as redox cyclers of two essential targets, using a coupled assay based on methemoglobin and the NADPH-dependent glutathione reductase (GRs) from P. falciparum. This redox activity is proposed to contribute to the dual action of Fluo-CQ on redox equilibrium and methemoglobin reduction via PfCRT-mediated drug efflux in the cytosol and then continuous redox-dependent shuttling between food vacuole and cytosol. Taking into account these physicochemical characteristics, a model was proposed to explain Fluo-CQ antimalarial effects involving the contribution of PfCRT-mediated transport, methemoglobin reduction, hematin binding, and NBD reduction activity catalyzed by PfGR in CQ-resistant versus CQ-sensitive parasites. Therefore, introduction of NBD fluorophore in drugs is not inert and should be taken into account in drug transport and imaging studies.


Assuntos
Cloroquina/análogos & derivados , Proteínas de Membrana Transportadoras/genética , Plasmodium falciparum/classificação , Proteínas de Protozoários/genética , Antimaláricos/química , Antimaláricos/farmacologia , Cloroquina/química , Cloroquina/farmacologia , Resistência a Medicamentos , Corantes Fluorescentes/química , Concentração de Íons de Hidrogênio , Malária Falciparum/parasitologia , Mutação , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética
2.
Molecules ; 22(1)2017 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-28106855

RESUMO

With the aim of increasing the structural diversity on the early antimalarial drug plasmodione, an efficient and versatile procedure to prepare a series of biaryl- and N-arylalkylamines as plasmodione analogues is described. Using the naturally occurring and commercially available menadione as starting material, a 2-step sequence using a Kochi-Anderson reaction and subsequent Pd-catalyzed Suzuki-Miyaura coupling was developed to prepare three representative biphenyl derivatives in good yields for antimalarial evaluation. In addition, synthetic methodologies to afford 3-benzylmenadione derivatives bearing a terminal -N(Me)2 or -N(Et)2 in different positions (ortho, meta and para) on the aryl ring of the benzylic chain of plasmodione were investigated through reductive amination was used as the optimal route to prepare these protonable N-arylalkylamine privileged scaffolds. The antimalarial activities were evaluated and discussed in light of their physicochemical properties. Among the newly synthesized compounds, the para-position of the substituent remains the most favourable position on the benzyl chain and the carbamate -NHBoc was found active both in vitro (42 nM versus 29 nM for plasmodione) and in vivo in Plasmodium berghei-infected mice. The measured acido-basic features of these new molecules support the cytosol-food vacuole shuttling properties of non-protonable plasmodione derivatives essential for redox-cycling. These findings may be useful in antimalarial drug optimization.


Assuntos
Aminas/administração & dosagem , Aminas/síntese química , Antimaláricos/administração & dosagem , Antimaláricos/síntese química , Malária/tratamento farmacológico , Aminas/química , Aminas/farmacologia , Animais , Antimaláricos/química , Antimaláricos/farmacologia , Técnicas de Química Combinatória , Camundongos , Estrutura Molecular , Oxirredução , Plasmodium berghei/efeitos dos fármacos , Relação Estrutura-Atividade , Vitamina K 3/análogos & derivados
3.
Chemistry ; 16(39): 11876-89, 2010 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-20839373

RESUMO

Synthesis of alternating pyridine-pyrrole molecular strands composed of two electron-rich pyrrole units (donors) sandwiched between three pyridinic cores (acceptors) is described. The envisioned strategy was a smooth electrosynthesis process involving ring contraction of corresponding tripyridyl-dipyridazine precursors. 2,6-Bis[6-(pyridazin-3-yl)]pyridine ligands 2a-c bearing pyridine residues at the terminal positions were prepared in suitable quantities by a Negishi metal cross-coupling procedure. The yields of heterocyclic coupling between 2-pyridyl zinc bromide reagents 12a-c and 2,6-bis(6-trifluoromethanesulfonylpyridazin-3-yl)pyridine increased from 68 to 95% following introduction of electron-donating methyl groups on the metallated halogenopyridine units. Favorable conditions for preparative electrochemical reduction of tripyridyl-dipyridazines 2b,c were established in THF/acetate buffer (pH 4.6)/acetonitrile to give the targeted 2,6-bis[5-(pyridin-2-yl)pyrrol-2-yl]pyridines 1b and 1c in good yields. The absorption behavior of the donor-acceptor tripyridyl-dipyrrole ligands was evaluated and compared to theoretical calculations. Highly fluorescent properties of these chromophores were found (ν(em)≈2 × 10(4) cm(-1) in MeOH and CH(2)Cl(2)), and both pyrrolic ligands exhibit a remarkable quantum yield in CH(2)Cl(2) (φ(f)=0.10). Structural studies in the solid state established the preferred cis conformation of the dipyrrolic ligands, which adopting a planar arrangement with an embedded molecule of water having a complexation energy exceeding 10 kcal mol(-1). The ability of the tripyridyl-dipyrrole to complex two copper(II) ions in a pentacoordinate square was investigated.


Assuntos
Antineoplásicos/síntese química , Cobre/química , Nitrogênio/química , Piridinas/síntese química , Pirróis/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Sítios de Ligação , Catálise , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Técnicas Eletroquímicas , Feminino , Humanos , Ligantes , Masculino , Modelos Químicos , Estrutura Molecular , Piridinas/química , Piridinas/farmacologia , Pirróis/química , Pirróis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...