Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuron ; 111(24): 4040-4057.e6, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863038

RESUMO

Glial cells support the function of neurons. Recent evidence shows that astrocytes are also involved in brain computations. To explore whether and how their excitable nature affects brain computations and motor behaviors, we used two-photon Ca2+ imaging of zebrafish larvae expressing GCaMP in both neurons and radial astrocytes (RAs). We found that in the optic tectum, RAs synchronize their Ca2+ transients immediately after the end of an escape behavior. Using optogenetics, ablations, and a genetically encoded norepinephrine sensor, we observed that RA synchronous Ca2+ events are mediated by the locus coeruleus (LC)-norepinephrine circuit. RA synchronization did not induce direct excitation or inhibition of tectal neurons. Nevertheless, it modulated the direction selectivity and the long-distance functional correlations among neurons. This mechanism supports freezing behavior following a switch to an alerted state. These results show that LC-mediated neuro-glial interactions modulate the visual system during transitions between behavioral states.


Assuntos
Astrócitos , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Neurônios/fisiologia , Colículos Superiores/fisiologia , Norepinefrina
2.
J Neurochem ; 138(4): 624-39, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27273428

RESUMO

Cyclin-dependent kinase 5 (CDK5) plays important roles in synaptic function. Its unregulated over-activation has been, however, associated with neurodegeneration in Alzheimer's disease. Our previous studies revealed that CDK5 silencing ameliorates tauopathy and spatial memory impairment in the 3xTgAD mouse model. However, how CDK5 targeting affects synaptic adhesion proteins, such as those involved in the cadherin/catenin system, during learning and memory processes is not completely understood. In this study, we detected reduced expression of p120 catenin (p120 ctn), N-cadherin, and ß-catenin in the brain of human Alzheimer's disease patients, in addition to a reduced PSD95 and GluN2B protein levels in a 3xTgAD mouse model. Such decrease in synaptic proteins was recovered by CDK5 silencing in mice leading to a better learning and memory performance. Additionally, CDK5 inhibition or knockout increased p120 ctn levels. Moreover, in a glutamate-induced excitotoxicity model, CDK5 silencing-induced neuroprotection depended on p120 ctn. Together, those findings suggest that p120 ctn plays an important role in the neuronal dysfunction of Alzheimer's disease models and contributes to CDK5 silencing-induced neuroprotection and improvement of memory function. p120ctn is part of the synaptic adhesion molecular complex N-cadh/p120ctn/B-ctn/PSD95, and it has a pivotal role in cell adhesion stabilization and dendritic spine modulation. Our data show that synaptic adhesion complex is affected in AD human brains and in AD models. This complex is recovered by the silencing of CDK5, preventing memory dysfunction in an AD mice model and contributing to the neuroprotection in a depend-mode of p120ctn.


Assuntos
Doença de Alzheimer/metabolismo , Cateninas/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Neuroproteção/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Caderinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Fosfoproteínas/metabolismo , delta Catenina
3.
J Neurosci Res ; 93(8): 1258-66, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25711385

RESUMO

Inappropriate activation of cyclin-dependent kinase 5 (CDK5) resulting from proteolytic release of the activator fragment p25 from the membrane contributes to the formation of neurofibrillary tangles, ß-amyloid (ßA) aggregation, and chronic neurodegeneration. At 18 months of age, 3× Tg-AD mice were sacrificed after either 3 weeks (short term) or 1 year (long term) of CDK5 knockdown. In short-term-treated animals, CDK5 knockdown reversed ßA aggregation in the hippocampi via inhibitory phosphorylation of glycogen synthase kinase 3ß Ser9 and activation of phosphatase PP2A. In long-term-treated animals, CDK5 knockdown induced a persistent reduction in CDK5 and prevented ßA aggregation, but the effect on amyloid precursor protein processing was reduced, suggesting that yearly booster therapy would be required. These findings further validate CDK5 as a target for preventing or blocking amyloidosis in older transgenic mice.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Marcação de Genes/métodos , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Agregação Patológica de Proteínas/prevenção & controle , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Camundongos , Camundongos Transgênicos , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...