Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36433040

RESUMO

Grafting polyethylene glycol (PEG) onto a polymer's surface is widely used to improve biocompatibility by reducing protein and cell adhesion. Although PEG is considered to be bioinert, its incorporation onto biomaterials has shown to improve cell viability depending on the amount and molecular weight (MW) used. This phenomenon was studied here by grafting PEG of three MW onto polyurethane (PU) substrata at three molar concentrations to assess their effect on PU surface properties and on the viability of osteoblasts and fibroblasts. PEG formed a covering on the substrata which increased the hydrophilicity and surface energy of PUs. Among the results, it was observed that osteoblast viability increased for all MW and grafting densities of PEG employed compared with unmodified PU. However, fibroblast viability only increased at certain combinations of MW and grafting densities of PEG, suggesting an optimal level of these parameters. PEG grafting also promoted a more spread cell morphology than that exhibited by unmodified PU; nevertheless, cells became apoptotic-like as PEG MW and grafting density were increased. These effects on cells could be due to PEG affecting culture medium pH, which became more alkaline at higher MW and concentrations of PEG. Results support the hypothesis that surface energy of PU substrates can be tuned by controlling the MW and grafting density of PEG, but these parameters should be optimized to promote cell viability without inducing apoptotic-like behavior.

2.
Carbohydr Res ; 504: 108334, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33957461

RESUMO

An alternative for the production of drug delivery system is proposed based on the Ceiba pentandra milkweed. The kapok cellulose was chemically crosslinked with citric acid (CA) at different CA proportions, and loaded with chlorhexidine diacetate (CHX) at different concentrations. Cellulose crosslinking was followed with FTIR and XPS analysis, and the CHX loading was determined using elemental analysis. In vitro studies showed a burst release within the first 2-3 h and the drug release kinetics was described with several models. In addition, the crosslinked Ceiba pentandra fibers did not exhibit a cytotoxic effect on human dermic fibroblasts. Results indicate that the crosslinked Ceiba pentandra fibers are a feasible material for the production of systems for drug release applications.


Assuntos
Ceiba , Celulose , Ácido Cítrico , Liberação Controlada de Fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA