Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Braz J Infect Dis ; 22(4): 257-272, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30165044

RESUMO

Dengue, the most prevalent arboviral disease worldwide, is caused by any of the four dengue virus (DENV) serotypes that co-circulate constantly in hyperendemic areas such as Medellin (Colombia), and these serotypes are transmitted by mosquitoes of the genus Aedes. In this study, we evaluated the replicative capacity of strains isolated in Medellin between 2003 and 2007 in C6/36 cells and in colonies of Aedes aegypti collected during 2010-2011 from high or low-incidence areas within the same city. The phylogenetic analysis grouped isolates according to the predominant genotypes found in the Americas, and the in vitro characterization showed differences in the morphological changes induced by the isolates of each of the isolated serotypes compared to the reference serotypes. In vitro replicative capacity studies demonstrated that genomic copy number increased at four days post-infection and that cell viability decreased significantly compared to the control for all serotypes. The largest number of genomic copies in C6/36 was produced by DENV-2, followed by DENV-1 and DENV-4; DENV-3 produced the smallest number of genomic copies and had the smallest negative effect on cell viability. Finally, differences in the in vivo replication of intercolonial serotypes between the Rockefeller colony and the field colonies and among the intracolonial serotypes were found. The replication of DENV-2 at 7 and 14 days in both high- and low-incidence colonies was higher than that of the other serotypes, and replication of DENV-3 in the mosquito colonies was the most stable on the days evaluated. Our results support the notion that replication and, possibly, DENV transmission and severity depend on many factors, including serotype and vector characteristics.


Assuntos
Aedes/virologia , Vírus da Dengue/fisiologia , Dengue/transmissão , Insetos Vetores/virologia , Replicação Viral , Animais , Colômbia , Dengue/virologia , Vírus da Dengue/genética , Vírus da Dengue/isolamento & purificação , Humanos , Filogenia , Sorogrupo , População Urbana
2.
Braz. j. infect. dis ; 22(4): 257-272, July-Aug. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-974229

RESUMO

ABSTRACT Dengue, the most prevalent arboviral disease worldwide, is caused by any of the four dengue virus (DENV) serotypes that co-circulate constantly in hyperendemic areas such as Medellin (Colombia), and these serotypes are transmitted by mosquitoes of the genus Aedes. In this study, we evaluated the replicative capacity of strains isolated in Medellin between 2003 and 2007 in C6/36 cells and in colonies of Aedes aegypti collected during 2010-2011 from high or low-incidence areas within the same city. The phylogenetic analysis grouped isolates according to the predominant genotypes found in the Americas, and the in vitro characterization showed differences in the morphological changes induced by the isolates of each of the isolated serotypes compared to the reference serotypes. In vitro replicative capacity studies demonstrated that genomic copy number increased at four days post-infection and that cell viability decreased significantly compared to the control for all serotypes. The largest number of genomic copies in C6/36 was produced by DENV-2, followed by DENV-1 and DENV-4; DENV-3 produced the smallest number of genomic copies and had the smallest negative effect on cell viability. Finally, differences in the in vivo replication of intercolonial serotypes between the Rockefeller colony and the field colonies and among the intracolonial serotypes were found. The replication of DENV-2 at 7 and 14 days in both high- and low-incidence colonies was higher than that of the other serotypes, and replication of DENV-3 in the mosquito colonies was the most stable on the days evaluated. Our results support the notion that replication and, possibly, DENV transmission and severity depend on many factors, including serotype and vector characteristics.


Assuntos
Humanos , Animais , Replicação Viral , Aedes/virologia , Dengue/transmissão , Vírus da Dengue/fisiologia , Insetos Vetores/virologia , Filogenia , População Urbana , Colômbia , Dengue/virologia , Vírus da Dengue/isolamento & purificação , Vírus da Dengue/genética , Sorogrupo
3.
PLoS Negl Trop Dis ; 10(4): e0004677, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27124663

RESUMO

BACKGROUND: New approaches to preventing chikungunya virus (CHIKV) are needed because current methods are limited to controlling mosquito populations, and they have not prevented the invasion of this virus into new locales, nor have they been sufficient to control the virus upon arrival. A promising candidate for arbovirus control and prevention relies on the introduction of the intracellular bacterium Wolbachia into Aedes aegypti mosquitoes. This primarily has been proposed as a tool to control dengue virus (DENV) transmission; however, evidence suggests Wolbachia infections confer protection for Ae. aegypti against CHIKV. Although this approach holds much promise for limiting virus transmission, at present our understanding of the ability of CHIKV to infect, disseminate, and be transmitted by wMel-infected Ae. aegypti currently being used at Wolbachia release sites is limited. METHODOLOGY/PRINCIPAL FINDINGS: Using Ae. aegypti infected with the wMel strain of Wolbachia that are being released in Medellin, Colombia, we report that these mosquitoes have reduced vector competence for CHIKV, even with extremely high viral titers in the bloodmeal. In addition, we examined the dynamics of CHIKV infection over the course of four to seven days post feeding. Wolbachia-infected mosquitoes remained non-infective over the duration of seven days, i.e., no infectious virus was detected in the saliva when exposed to bloodmeals of moderate viremia, but CHIKV-exposed, wild type mosquitoes did have viral loads in the saliva consistent with what has been reported elsewhere. Finally, the presence of wMel infection had no impact on the lifespan of mosquitoes as compared to wild type mosquitoes following CHIKV infection. CONCLUSIONS/SIGNIFICANCE: These results could have an impact on vector control strategies in areas where Ae. aegypti are transmitting both DENV and CHIKV; i.e., they argue for further exploration, both in the laboratory and the field, on the feasibility of expanding this technology beyond DENV.


Assuntos
Aedes/microbiologia , Aedes/virologia , Antibiose , Febre de Chikungunya/transmissão , Vírus Chikungunya/isolamento & purificação , Transmissão de Doença Infecciosa/prevenção & controle , Wolbachia/crescimento & desenvolvimento , Aedes/fisiologia , Animais , Febre de Chikungunya/prevenção & controle , Insetos Vetores , Saliva/virologia , Análise de Sobrevida , Wolbachia/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...