Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 584-585: 921-934, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28187943

RESUMO

Sewage sludge is considered a costly waste, whose benefit has received a lot of attention for decades. In this sense, a variety of promising technologies, such as thermal hydrolysis and wet oxidation, are currently employed. Thermal hydrolysis is used as a pretreatment step ahead of anaerobic digestion processes and wet oxidation is intended for the solubilization and partial oxidation of the sludge. Such processes could be utilized for solubilizing polysaccharides, lipids, fragments of them and phosphorus (thermal hydrolysis) or for generating carboxylic acids (wet oxidation). This article compiles the available information on the production of valuable chemicals by these techniques and comments on their main features. Temperature, reaction duration times and sludge characteristics influence the experimental results significantly, but only the first two variables have been thoroughly studied. For thermal hydrolysis, a rise of temperature led to an increase in the solubilized biomolecules, but also to a greater decomposition of proteins and undesirable reactions of carbohydrates with themselves or with proteins. At constant temperature, the amounts of substances that can be recovered tend to become time independent after several minutes. Diluted and activated sludges seem to be more readily hydrolyzable than the thickened and primary ones. For wet oxidation, the dependence of the production of carboxylic acids with temperature and time is not simple: their concentration can increase, decrease or go through a maximum. At high temperatures, acetic acid is the main carboxylic acid obtained. Concentrated, fermented and secondary sludge seem to be more suitable for yielding higher amounts of acid than diluted, undigested and primary ones.

2.
Water Res ; 105: 282-290, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27636151

RESUMO

Thermal pre-treatments of activated sludge involve the release of a high amount of polymeric substances into the bulk medium. The molecular size of these polymers will largely define the subsequent biological treatment of the liquid effluent generated. In this work, the effects of wet oxidation treatment (WO) on the fingerprints of the polymeric substances which compose the activated sludge, were analysed. For a better understanding of these transformations, the sludge was separated into its main fractions: soluble microbial products (SMP), loosely bound extracellular polymeric substances (LB-EPS), tightly bound extracellular polymeric substances (TB-EPS) and naked cells, and then each one was subjected to WO separately (190 °C and 65 bar), determining the fingerprints evolution by size exclusion technique. Results revealed a fast degradation of larger molecules (over 500 kDa) during the first minutes of treatment (40 min). WO also increases the absorptive properties of proteins (especially for 30 kDa), which is possibly due to the hydroxylation of phenylalanine amino acids in their structure. WO of naked cells involved the formation of molecules between 23 and 190 kDa, which are related to the release of cytoplasmic polymers, and more hydrophobic polymers, probably from the cell membrane. The results allowed to establish a relationship between the location of polymeric material and its facility to become oxidised; thus, the more internal the polymeric material in the cell, the easier its oxidation. When working directly with the raw sludge, hydrolysis mechanisms played a key role during the starting period. Once a high degree of solubilisation was reached, the molecules were rapidly oxidised into other compounds with refractory characteristics. The final effluent after WO showed almost 90% of low molecular weight solubilised substances (0-35 kDa).


Assuntos
Polímeros/química , Esgotos/química , Peso Molecular , Oxirredução , Proteínas/química
3.
J Environ Manage ; 146: 251-259, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25181609

RESUMO

Wet oxidation (WO) is an interesting alternative for the solubilization and mineralization of activated sludge. The effects of different temperatures (160-200 °C) and pressures (4-8 MPa), on the evolution of chemical composition and rheological characteristics of a thickened activated sludge during WO are analyzed in this work. Soluble COD increases initially to a maximum and then diminishes, while the apparent viscosity of the mixture falls continuously throughout the experiment. Based on the experimental evolution of the compositions and rheological characteristics of the sludge, a mechanism consisting of two stages in series is proposed. Initially, the solid organic compounds are solubilized following a pseudo-second order kinetic model with respect to solid COD. After that, the solubilized COD was oxidized, showing a pseudofirst kinetic order, by two parallel pathways: the complete mineralization of the organic matter and the formation of highly refractory COD. Kinetic parameters of the model, including the activation energies are mentioned, with good global fitting to the experiments described.


Assuntos
Reatores Biológicos , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Humanos , Cinética , Modelos Teóricos , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...