Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 185: 110612, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31740327

RESUMO

Given the potential applications of fluorescent carbon nanoparticles in biomedicine, the relationship between their chemical structure, optical properties and biocompatibility has to be investigated in detail. In this work, different types of fluorescent carbon nanoparticles are synthesized by acid treatment, sonochemical treatment, electrochemical cleavage and polycondensation. The particle size ranges from 1 to 6 nm, depending on the synthesis method. Nanoparticles that were prepared by acid or sonochemical treatments from graphite keep a crystalline core and can be classified as graphene quantum dots. The electrochemically produced nanoparticles do not clearly show the graphene core, but it is made of heterogeneous aromatic structures with limited size. The polycondensation nanoparticles do not have CC double bonds. The type of functional groups on the carbon backbone and the optical properties, both absorbance and photoluminescence, strongly depend on the nanoparticle origin. The selected types of nanoparticles are compatible with human intestinal cells, while three of them also show activity against colon cancer cells. The widely different properties of the nanoparticle types need to be considered for their use as diagnosis markers and therapeutic vehicles, specifically in the digestive system.


Assuntos
Carbono/química , Intestinos/patologia , Nanopartículas/química , Nanomedicina Teranóstica , Células CACO-2 , Fluorescência , Humanos , Nanopartículas/ultraestrutura , Fenômenos Ópticos , Espectroscopia Fotoeletrônica , Espectroscopia de Prótons por Ressonância Magnética , Pontos Quânticos/química , Espectrometria de Fluorescência , Espectrofotometria Infravermelho
2.
Org Biomol Chem ; 15(42): 8904-8913, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-28994844

RESUMO

The synthesis of fused heterocycle-pyridinones has been achieved by oxidative coupling of N-unprotected primary heterocycle-amides with internal alkynes. The reaction, which is catalysed by Ru(ii) and assisted by Cu(ii), takes place through C-H and N-H bond activation of the heterocyclic unit. The scope of the reaction includes a variety of alkynes, electron-rich thiophenes, furans and pyrroles, and even electron-poor pyridines. The reaction is fully regioselective with respect to the position of the C-H bond activation due to the directing effect of the amide group. In the same way, the synthesis of fused heterocycle-pyrones (isocoumarins) has been developed by Ru-catalysed oxidative coupling of heterocyclic carboxylic acids and internal alkynes. The reaction involves C-H and O-H bond activation. This reaction also has a broad scope, from electron-rich thiophenes, furans and pyrroles to electron-deficient pyridines and quinolines.

3.
Inorg Chem ; 40(19): 4913-7, 2001 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-11531439

RESUMO

For the first time, the existence of a strong intramolecular 1,4-interaction between the phosphorus atom and the oxygen atom in alpha-keto-stabilized ylides has been demonstrated by means of theoretical calculations. This interaction has a notable influence on the conformational preferences and rotational barriers of alpha-stabilized phosphorus ylides and bis-ylides.

4.
Inorg Chem ; 40(17): 4455-63, 2001 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-11487355

RESUMO

The reaction system consisting of copper, saccharinate, and the auxiliary ligands H(2)O, PPh(3), and NH(3) produces a sequence of compounds in which saccharinate is coordinated to copper in four distinct manners. The complex trans-[Cu(sacch)(2)(H(2)O)(4)] (2) (produced by thermal dehydration of trans-[Cu(sacch)(2)(H(2)O)(4)].2H(2)O (1)) reacts with triphenylphosphine in CH(2)Cl(2) to produce any or all of three Cu(I) complexes, depending upon conditions. The three Cu(I) compounds are Cu(sacch)(PPh(3))(3) (3), in which saccharinate binds to copper through the carbonyl group of the ligand, Cu(sacch)(PPh(3))(2) (4), in which sacch binds to Cu through its charge-bearing nitrogen atom; and [Cu(sacch)(PPh(3))](2) (5), a dinuclear complex in which saccharinate bridges two Cu centers through its imidate nitrogen and carbonyl oxygen atoms. Complexes 3-5 can be isolated individually, although in solution they exist in a complex equilibrium which has been examined by NMR spectroscopy. Each of the three Cu(I) products reacts with NH(3) in CH(2)Cl(2) solution to produce trans-[Cu(sacch)(2)(NH(3))(4)] (6), an unstable Cu(II) complex that exhibits misdirected valence at the Cu-N(sacch) bond. Complex 6 evolves spontaneously to [Cu(sacch)(NH(3))(4)](sacch).H(2)O (7), which in the solid state is dominated by a supramolecular aggregate of two formula units, linked by hydrogen bonding in which the water molecule plays a central role. Alternative pathways exist to several of the products. The X-ray crystal structure analyses of 3-7 are reported and establish the coordination modes of saccharinate, the misdirected valence in 6, and the supramolecular aggregation in 7. The structure analysis of 7 by single-crystal neutron diffraction is reported and together with the previously reported neutron structure analysis of 1 establishes the substitution of the auxiliary ligand H(2)O by NH(3) in the Cu(II) products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...