Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(34): 15672-15679, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35993888

RESUMO

Expanding proton-coupled electron transfer to multiproton translocations (MPCET) provides a bioinspired mechanism to transport protons away from the redox site. This expansion has been accomplished by separating the initial phenolic proton donor from the pyridine-based terminal proton acceptor by a Grotthuss-type proton wire made up of concatenated benzimidazoles that form a hydrogen-bonded network. However, it was found that the midpoint potential of the phenol oxidation that launched the Grotthuss-type proton translocations is a function of the number of benzimidazoles in the hydrogen-bonded network; it becomes less positive (i.e., a weaker oxidant) as the number of bridging benzimidazoles increases. Herein, we report a strategy to maintain the high redox potential necessary for oxidative processes relevant to artificial photosynthesis, e.g., water oxidation and long-range MPCET processes for managing protons. The integrated structural and functional roles of the benzimidazole-based bridge provide sites for substitution of the benzimidazoles with electron-withdrawing groups (e.g., trifluoromethyl groups). Such substitution increases the midpoint potential of the phenoxyl radical/phenol couple so that proton translocations over ∼11 Å become thermodynamically comparable to that of an unsubstituted system where one proton is transferred over ∼2.5 Å. The extended, substituted system maintains the hydrogen-bonded network; infrared spectroelectrochemistry confirms reversible proton translocations from the phenol to the pyridyl terminal proton acceptor upon oxidation and reduction. Theory supports the change in driving force with added electron-withdrawing groups and provides insight into the role of electron density and electrostatic potential in MPCET processes associated with these Grotthuss-type proton translocations.


Assuntos
Fenóis , Prótons , Benzimidazóis/química , Transporte de Elétrons , Hidrogênio/química , Oxirredução , Fenol/química , Fenóis/química
2.
J Phys Chem Lett ; 13(20): 4479-4485, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35575065

RESUMO

Photoinduced proton-coupled electron transfer and long-range two-proton transport via a Grotthuss-type mechanism are investigated in a biomimetic construct. The ultrafast, nonequilibrium dynamics are assessed via two-dimensional electronic vibrational spectroscopy, in concert with electrochemical and computational techniques. A low-frequency mode is identified experimentally and found to promote double proton and electron transfer, supported by recent theoretical simulations of a similar but abbreviated (non-photoactive) system. Excitation frequency peak evolution and center line slope dynamics show direct evidence of strongly coupled nuclear and electronic degrees of freedom, from which we can conclude that the double proton and electron transfer processes are concerted (up to an uncertainty of 24 fs). The nonequilibrium pathway from the photoexcited Franck-Condon region to the E2PT state is characterized by an ∼110 fs time scale. This study and the tools presented herein constitute a new window into hot charge transfer processes involving an electron and multiple protons.


Assuntos
Elétrons , Prótons , Transporte de Elétrons , Movimento (Física) , Análise Espectral
3.
J Am Chem Soc ; 142(52): 21842-21851, 2020 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-33337139

RESUMO

The essential role of a well-defined hydrogen-bond network in achieving chemically reversible multiproton translocations triggered by one-electron electrochemical oxidation/reduction is investigated by using pyridylbenzimidazole-phenol models. The two molecular architectures designed for these studies differ with respect to the position of the N atom on the pyridyl ring. In one of the structures, a hydrogen-bond network extends uninterrupted across the molecule from the phenol to the pyridyl group. Experimental and theoretical evidence indicates that an overall chemically reversible two-proton-coupled electron-transfer process (E2PT) takes place upon electrochemical oxidation of the phenol. This E2PT process yields the pyridinium cation and is observed regardless of the cyclic voltammogram scan rate. In contrast, when the hydrogen-bond network is disrupted, as seen in the isomer, at high scan rates (∼1000 mV s-1) a chemically reversible process is observed with an E1/2 characteristic of a one-proton-coupled electron-transfer process (E1PT). At slow cyclic voltammetric scan rates (<1000 mV s-1) oxidation of the phenol results in an overall chemically irreversible two-proton-coupled electron-transfer process in which the second proton-transfer step yields the pyridinium cation detected by infrared spectroelectrochemistry. In this case, we postulate an initial intramolecular proton-coupled electron-transfer step yielding the E1PT product followed by a slow, likely intermolecular chemical step involving a second proton transfer to give the E2PT product. Insights into the electrochemical behavior of these systems are provided by theoretical calculations of the electrostatic potentials and electric fields at the site of the transferring protons for the forward and reverse processes. This work addresses a fundamental design principle for constructing molecular wires where protons are translocated over varied distances by a Grotthuss-type mechanism.

4.
J Chromatogr Sci ; 48(8): 618-23, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20819289

RESUMO

New Fuchsin (NF), also known as Magenta III, has potential applications in photodynamic therapy. The commercial product labeled NF contains two other dye components in different proportions, Magenta II and Magenta I (Rosaniline). The proportions of NF, Magenta II, and Magenta I determined by reversed-phase high-performance liquid chromatography (RP-HPLC) in the commercial sample used were 71.6 +/- 0.4%, 25.2 +/- 0.2%, and 2.8 +/- 0.1% (n = 7), respectively. The isolation, purification, and characterization of commercial NF dye components were carried out applying different techniques, such as preparative column liquid chromatography (PCLC), thin layer chromatography (TLC), RP-HPLC, absorption spectrophotometry, nuclear magnetic resonance spectroscopy (NMR), electrospray ionization mass spectrometry (ESI-MS), and tandem electrospray ionization mass spectrometry (ESI-MS-MS). After separation and isolation, the degree of purity obtained for NF compound was higher than 95% and 92% for Magenta II and Magenta I compounds, respectively. Therefore, it is essential to ensure a high degree of purity of these dyes as raw material to obtain new drugs intended for therapeutic treatments.


Assuntos
Corantes de Rosanilina , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa , Cromatografia em Camada Fina , Espectrometria de Massas , Ressonância Magnética Nuclear Biomolecular , Corantes de Rosanilina/química , Corantes de Rosanilina/isolamento & purificação , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...