Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 102021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34279225

RESUMO

The PcrA/UvrD helicase binds directly to RNA polymerase (RNAP) but the structural basis for this interaction and its functional significance have remained unclear. In this work, we used biochemical assays and hydrogen-deuterium exchange coupled to mass spectrometry to study the PcrA-RNAP complex. We find that PcrA binds tightly to a transcription elongation complex in a manner dependent on protein:protein interaction with the conserved PcrA C-terminal Tudor domain. The helicase binds predominantly to two positions on the surface of RNAP. The PcrA C-terminal domain engages a conserved region in a lineage-specific insert within the ß subunit which we identify as a helicase interaction motif present in many other PcrA partner proteins, including the nucleotide excision repair factor UvrB. The catalytic core of the helicase binds near the RNA and DNA exit channels and blocking PcrA activity in vivo leads to the accumulation of R-loops. We propose a role for PcrA as an R-loop suppression factor that helps to minimize conflicts between transcription and other processes on DNA including replication.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Helicases/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Estruturas R-Loop/fisiologia , Bacillus subtilis , Cromossomos , DNA/metabolismo , Reparo do DNA , Replicação do DNA , Escherichia coli/genética , Proteínas de Escherichia coli , Regulação Bacteriana da Expressão Gênica , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas
2.
ACS Nano ; 15(6): 10203-10216, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34060810

RESUMO

Hypertrophic cardiomyopathy (HCM) is a disease of the myocardium caused by mutations in sarcomeric proteins with mechanical roles, such as the molecular motor myosin. Around half of the HCM-causing genetic variants target contraction modulator cardiac myosin-binding protein C (cMyBP-C), although the underlying pathogenic mechanisms remain unclear since many of these mutations cause no alterations in protein structure and stability. As an alternative pathomechanism, here we have examined whether pathogenic mutations perturb the nanomechanics of cMyBP-C, which would compromise its modulatory mechanical tethers across sliding actomyosin filaments. Using single-molecule atomic force spectroscopy, we have quantified mechanical folding and unfolding transitions in cMyBP-C domains targeted by HCM mutations that do not induce RNA splicing alterations or protein thermodynamic destabilization. Our results show that domains containing mutation R495W are mechanically weaker than wild-type at forces below 40 pN and that R502Q mutant domains fold faster than wild-type. None of these alterations are found in control, nonpathogenic variants, suggesting that nanomechanical phenotypes induced by pathogenic cMyBP-C mutations contribute to HCM development. We propose that mutation-induced nanomechanical alterations may be common in mechanical proteins involved in human pathologies.


Assuntos
Cardiomiopatia Hipertrófica , Cardiomiopatia Hipertrófica/genética , Proteínas de Transporte/genética , Humanos , Mutação , Fenótipo , Sarcômeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...