Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Orthodontics (Chic.) ; 13(1): e66-75, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22567656

RESUMO

AIM: To analyze the influence of bracket base mesh geometry on the stresses generated in the tooth-cement-bracket continuum by a shear/peel load case and to compare the stress generated by three different loads (masticatory, peel, and twisting) on the bracket mesh base by employing a three-dimensional (3D) finite element computer model. METHODS: A validated 3D finite element model of the bracket-cement-tooth system was constructed consisting of 40,536 nodes and 49,201 finite elements. RESULTS: An increase in the diameter of the bracket mesh base wire resulted in a decrease in the stress at the enamel and cement. Increase in wire spacing (200 to 500 mm) increased the stresses in the enamel and cement at all wire diameters, but within the impregnated wire mesh, the major stress decreased with the increase in the wire spacing. Peel load produced comparatively less stress on enamel than masticatory and twisting force. CONCLUSION: Alteration in mesh spacing and wire diameter influences the magnitude and distribution of stresses within the bracket-cement-tooth continuum. Peel load and twisting load are best to debond the bracket since they produced minimal stress on the enamel, which is suggestive of lower chances of enamel damage.


Assuntos
Cimentos Dentários , Braquetes Ortodônticos , Simulação por Computador , Colagem Dentária , Cimentos Dentários/química , Análise de Elementos Finitos , Humanos , Estresse Mecânico , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...