Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 3531, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669601

RESUMO

Homologous recombination (HR) factors were recently implicated in DNA replication fork remodeling and protection. While maintaining genome stability, HR-mediated fork remodeling promotes cancer chemoresistance, by as-yet elusive mechanisms. Five HR cofactors - the RAD51 paralogs RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3 - recently emerged as crucial tumor suppressors. Albeit extensively characterized in DNA repair, their role in replication has not been addressed systematically. Here, we identify all RAD51 paralogs while screening for modulators of RAD51 recombinase upon replication stress. Single-molecule analysis of fork progression and architecture in isogenic cellular systems shows that the BCDX2 subcomplex restrains fork progression upon stress, promoting fork reversal. Accordingly, BCDX2 primes unscheduled degradation of reversed forks in BRCA2-defective cells, boosting genomic instability. Conversely, the CX3 subcomplex is dispensable for fork reversal, but mediates efficient restart of reversed forks. We propose that RAD51 paralogs sequentially orchestrate clinically relevant transactions at replication forks, cooperatively promoting fork remodeling and restart.


Assuntos
Replicação do DNA , Rad51 Recombinase/metabolismo , Proteína BRCA2/metabolismo , Linhagem Celular Tumoral , Estruturas Cromossômicas/metabolismo , Cromossomos/ultraestrutura , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Recombinação Homóloga , Humanos , Microscopia , Mutagênicos , Mutação , Osteossarcoma/metabolismo , RNA Interferente Pequeno/metabolismo
2.
Cell Rep ; 27(9): 2558-2566.e4, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31141682

RESUMO

RIF1 is a multifunctional protein implicated in controlling DNA replication and repair. Here, we show that human RIF1 protects nascent DNA from over-degradation at stalled replication forks. The major nuclease resecting nascent DNA in the absence of RIF1 is DNA2, operating with WRN as an accessory helicase. We show that RIF1 acts with protein phosphatase 1 to prevent over-degradation and that RIF1 limits phosphorylation of WRN at sites implicated in resection control. Protection by RIF1 against inappropriate degradation prevents accumulation of DNA breakage. Our observations uncover a crucial function of human RIF1 in preventing genome instability by protecting forks from unscheduled DNA2-WRN-mediated degradation.


Assuntos
Replicação do DNA , DNA/metabolismo , Instabilidade Genômica , Receptores de Neuropeptídeo Y/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Helicase da Síndrome de Werner/metabolismo , DNA/química , DNA/genética , Células HEK293 , Humanos , Fosforilação , Receptores de Neuropeptídeo Y/genética , Proteínas de Ligação a Telômeros/genética , Helicase da Síndrome de Werner/genética
3.
BMC Infect Dis ; 19(1): 237, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30845966

RESUMO

BACKGROUND: The clinical course of Campylobacter infection varies in symptoms and severity depending on host factors, virulence of the pathogen and initiated therapy. The type VI secretion system (T6SS) has been identified as a novel virulence factor, which mediates contact-dependent injection of enzymes and toxins into competing bacteria or host cells and facilitates the colonisation of a host organism. We aimed to compare the clinical course of Campylobacter infection caused by strains with and without the T6SS and identify possible associations between this putative virulence factor and the clinical manifestations of disease. METHODS: From April 2015 to January 2017, patients with detection of Campylobacter spp. were identified at the University Hospital of Basel and the University Children's Hospital of Basel and included in this case-control study. Presence of the T6SS gene cluster was assayed by PCR targeting the hcp gene, confirmed with whole genome sequencing. Pertinent clinical data was collected by medical record review. Differences in disease- and host-characteristics between T6SS-positive (case) and -negative (control) were compared in a uni- and multi-variable analysis. Hospital admission, antibiotic therapy, admission to intensive care unit, development of bacteraemia and in-hospital mortality were considered as clinical endpoints. RESULTS: We identified 138 cases of Campylobacter jejuni infections and 18 cases of Campylobacter coli infections from a paediatric and adult population. Analyses were focused on adult patients with C. jejuni (n = 119) of which 16.8% were T6SS-positive. Comparisons between T6SS-positive and -negative C. jejuni isolates did not reveal significant differences regarding clinical manifestations or course of disease. All clinical endpoints showed a similar distribution in both groups. A higher score in the Charlson Comorbidity Index was associated with T6SS-positive C. jejuni isolates (p < 0.001) and patients were more likely to have a solid organ transplant and to be under immunosuppressive therapy. CONCLUSIONS: Our study does not provide evidence that T6SS is associated with a more severe clinical course. Interestingly, T6SS-positive isolates are more commonly found in immunocompromised patients: an observation which merits further investigation.


Assuntos
Infecções por Campylobacter/diagnóstico , Campylobacter/patogenicidade , Sistemas de Secreção Tipo VI/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Campylobacter/efeitos dos fármacos , Campylobacter/genética , Infecções por Campylobacter/tratamento farmacológico , Infecções por Campylobacter/microbiologia , Infecções por Campylobacter/mortalidade , Campylobacter coli/efeitos dos fármacos , Campylobacter coli/genética , Campylobacter coli/patogenicidade , Campylobacter jejuni/efeitos dos fármacos , Campylobacter jejuni/genética , Campylobacter jejuni/patogenicidade , Estudos de Casos e Controles , DNA Bacteriano/química , DNA Bacteriano/isolamento & purificação , DNA Bacteriano/metabolismo , Feminino , Mortalidade Hospitalar , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Família Multigênica , Virulência , Sequenciamento Completo do Genoma
4.
Cell Rep ; 24(10): 2629-2642.e5, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30184498

RESUMO

Interstrand cross-links (ICLs) are toxic DNA lesions interfering with DNA metabolism that are induced by widely used anticancer drugs. They have long been considered absolute roadblocks for replication forks, implicating complex DNA repair processes at stalled or converging replication forks. Recent evidence challenged this view, proposing that single forks traverse ICLs by yet elusive mechanisms. Combining ICL immunolabeling and single-molecule approaches in human cells, we now show that ICL induction leads to global replication fork slowing, involving forks not directly challenged by ICLs. Active fork slowing is linked to rapid recruitment of RAD51 to replicating chromatin and to RAD51/ZRANB3-mediated fork reversal. This global modulation of fork speed and architecture requires ATR activation, promotes single-fork ICL traverse-here, directly visualized by electron microscopy-and prevents chromosomal breakage by untimely ICL processing. We propose that global fork slowing by remodeling provides more time for template repair and promotes bypass of residual lesions, limiting fork-associated processing.


Assuntos
Quebra Cromossômica , Dano ao DNA/genética , Replicação do DNA/genética , DNA/metabolismo , Western Blotting , Linhagem Celular Tumoral , Ensaio Cometa , DNA/genética , DNA/ultraestrutura , Dano ao DNA/fisiologia , Replicação do DNA/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Citometria de Fluxo , Imunofluorescência , Humanos , Microscopia Eletrônica , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo
5.
Mol Cell ; 71(6): 897-910.e8, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30122534

RESUMO

Chromatin ubiquitination by the ubiquitin ligase RNF168 is critical to regulate the DNA damage response (DDR). DDR deficiencies lead to cancer-prone syndromes, but whether this reflects DNA repair defects is still elusive. We identified key factors of the RNF168 pathway as essential mediators of efficient DNA replication in unperturbed S phase. We found that loss of RNF168 leads to reduced replication fork progression and to reversed fork accumulation, particularly evident at repetitive sequences stalling replication. Slow fork progression depends on MRE11-dependent degradation of reversed forks, implicating RNF168 in reversed fork protection and restart. Consistent with regular nucleosomal organization of reversed forks, the replication function of RNF168 requires H2A ubiquitination. As this novel function is shared with the key DDR players ATM, γH2A.X, RNF8, and 53BP1, we propose that double-stranded ends at reversed forks engage classical DDR factors, suggesting an alternative function of this pathway in preventing genome instability and human disease.


Assuntos
Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Histonas/metabolismo , Linhagem Celular , Quebras de DNA de Cadeia Dupla , Replicação do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Humanos , Fase S/fisiologia , Transdução de Sinais , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/fisiologia
6.
EMBO Rep ; 19(7)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29739811

RESUMO

In both yeast and mammals, the topoisomerase poison camptothecin (CPT) induces fork reversal, which has been proposed to stabilize replication forks, thus providing time for the repair of CPT-induced lesions and supporting replication restart. We show that Tel1, the Saccharomyces cerevisiae orthologue of human ATM kinase, stabilizes CPT-induced reversed forks by counteracting their nucleolytic degradation by the MRX complex. Tel1-lacking cells are hypersensitive to CPT specifically and show less reversed forks in the presence of CPT The lack of Mre11 nuclease activity restores wild-type levels of reversed forks in CPT-treated tel1Δ cells without affecting fork reversal in wild-type cells. Moreover, Mrc1 inactivation prevents fork reversal in wild-type, tel1Δ, and mre11 nuclease-deficient cells and relieves the hypersensitivity of tel1Δ cells to CPT Altogether, our data indicate that Tel1 counteracts Mre11 nucleolytic activity at replication forks that undergo Mrc1-mediated reversal in the presence of CPT.


Assuntos
Proteínas de Ciclo Celular/genética , Replicação do DNA/genética , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Camptotecina/farmacologia , Reparo do DNA/genética , Replicação do DNA/efeitos dos fármacos , DNA Topoisomerases/genética , Humanos , Mutação , Saccharomyces cerevisiae/genética
7.
Nat Commun ; 8(1): 859, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-29038466

RESUMO

Besides its role in homologous recombination, the tumor suppressor BRCA2 protects stalled replication forks from nucleolytic degradation. Defective fork stability contributes to chemotherapeutic sensitivity of BRCA2-defective tumors by yet-elusive mechanisms. Using DNA fiber spreading and direct visualization of replication intermediates, we report that reversed replication forks are entry points for fork degradation in BRCA2-defective cells. Besides MRE11 and PTIP, we show that RAD52 promotes stalled fork degradation and chromosomal breakage in BRCA2-defective cells. Inactivation of these factors restores reversed fork frequency and chromosome integrity in BRCA2-defective cells. Conversely, impairing fork reversal prevents fork degradation, but increases chromosomal breakage, uncoupling fork protection, and chromosome stability. We propose that BRCA2 is dispensable for RAD51-mediated fork reversal, but assembles stable RAD51 nucleofilaments on regressed arms, to protect them from degradation. Our data uncover the physiopathological relevance of fork reversal and illuminate a complex interplay of homologous recombination factors in fork remodeling and stability.BRCA2 is involved in both homologous recombination (HR) and the protection of stalled replication forks from degradation. Here the authors reveal how HR factors cooperate in fork remodeling, showing that BRCA2 supports RAD51 loading on the regressed arms of reversed replication forks to protect them from degradation.


Assuntos
Proteína BRCA2/metabolismo , Proteínas de Transporte/metabolismo , Replicação do DNA , Recombinação Homóloga , Proteína Homóloga a MRE11/metabolismo , Proteínas Nucleares/metabolismo , Rad51 Recombinase/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Linhagem Celular Tumoral , Instabilidade Cromossômica , Proteínas de Ligação a DNA , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...