Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Can J Neurol Sci ; 50(5): 719-729, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36200558

RESUMO

OBJECTIVE: To measure regional cerebral metabolic rate of glucose (CMRGlu) in patients with chronic disorders of consciousness (DOCs) using 18F-fluorodeoxyglucose positron emission tomography (FDG-PET). METHODS: This retrospective cohort study examined 50 patients (mean age: 40.9 ± 20.1 years) with traumatic brain injury (TBI)-induced chronic DOCs [minimally conscious state (MCS)+, n = 20; MCS-, n = 15 and vegetative state (VS), n = 15]. We measured FDG-PET-based CMRGlu values in 12 regions of both brain hemispheres and compared those among MCS+, MCS - and VS patients. RESULTS: In both hemispheres, the regional CMRGlu reduced with consciousness deterioration in 11 of 12 regions (91.7%). In seven right hemisphere regions, CMRGlu values were markedly higher in MCS+ patients than in MCS- patients. Furthermore, CMRGlu was suggestively higher in the left occipital region in MCS- patients than in VS patients. CONCLUSION: Functional preservation in the left occipital region in patients with chronic DOCs might reflect an awareness of external environments, whereas extensive functional preservation in the right cerebral hemisphere might reflect communication motivation.


Assuntos
Encéfalo , Estado de Consciência , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Fluordesoxiglucose F18/metabolismo , Transtornos da Consciência/diagnóstico por imagem , Estudos Retrospectivos , Estado Vegetativo Persistente , Tomografia por Emissão de Pósitrons/métodos , Glucose/metabolismo
2.
Int J Mol Sci ; 22(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34884589

RESUMO

The non-targeted effects of radiation have been known to induce significant alternations in cell survival. Although the effects might govern the progression of tumor sites following advanced radiotherapy, the impacts on the intercellular control of the cell cycle following radiation exposure with a modified field, remain to be determined. Recently, a fluorescent ubiquitination-based cell-cycle indicator (FUCCI), which can visualize the cell-cycle phases with fluorescence microscopy in real time, was developed for biological cell research. In this study, we investigated the non-targeted effects on the regulation of the cell cycle of human cervical carcinoma (HeLa) cells with imperfect p53 function that express the FUCCI (HeLa-FUCCI cells). The possible effects on the cell-cycle phases via soluble factors were analyzed following exposure to different field configurations, which were delivered using a 150 kVp X-ray irradiator. In addition, using synchrotron-generated, 5.35 keV monochromatic X-ray microbeams, high-precision 200 µm-slit microbeam irradiation was performed to investigate the possible impacts on the cell-cycle phases via cell-cell contacts. Collectively, we could not detect the intercellular regulation of the cell cycle in HeLa-FUCCI cells, which suggested that the unregulated cell growth was a malignant tumor. Our findings indicated that there was no significant intercellular control system of the cell cycle in malignant tumors during or after radiotherapy, highlighting the differences between normal tissue and tumor characteristics.


Assuntos
Ciclo Celular , Corantes Fluorescentes/química , Síncrotrons/instrumentação , Ubiquitinação , Neoplasias do Colo do Útero/patologia , Sobrevivência Celular , Feminino , Células HeLa , Humanos , Microscopia de Fluorescência , Raios X
3.
Sci Rep ; 11(1): 13113, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34219128

RESUMO

We recently showed that when a low X-ray dose is used, cell death is enhanced in nucleus-irradiated compared with whole-cell-irradiated cells; however, the role of the cytoplasm remains unclear. Here, we show changes in the DNA damage responses with or without X-ray microbeam irradiation of the cytoplasm. Phosphorylated histone H2AX foci, a surrogate marker for DNA double-strand breaks, in V79 and WI-38 cells are not observed in nucleus irradiations at ≤ 2 Gy, whereas they are observed in whole-cell irradiations. Addition of an ataxia telangiectasia mutated (ATM) kinase inhibitor to whole-cell irradiations suppresses foci formation at ≤ 2 Gy. ABL1 and p73 expression is upregulated following nucleus irradiation, suggesting the induction of p73-dependent cell death. Furthermore, CDKN1A (p21) is upregulated following whole-cell irradiation, indicating the induction of cell cycle arrest. These data reveal that cytoplasmic radioresponses modify ATM-mediated DNA damage responses and determine the fate of cells irradiated at low doses.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Citoplasma/efeitos da radiação , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Transdução de Sinais , Animais , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Cricetulus , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , DNA/metabolismo , Dano ao DNA , Humanos
4.
J Radiat Res ; 62(4): 557-563, 2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-33912931

RESUMO

The Commission for 'Corresponding to Radiation Disaster of the Japanese Radiation Research Society' formulated a description of potential health effects triggered by tritium. This was in response to the issue of discharging water containing tritium filtered by the Advanced Liquid Processing System (ALPS), generated and stored in Fukushima Daiichi Nuclear Power Station after the accident. In this review article, the contents of the description, originally provided in Japanese, which gives clear and detailed explanation about potential health effects triggered by tritium based on reliable scientific evidence in an understandable way for the public, were summarized. Then, additional information about biochemical or environmental behavior of organically bound tritium (OBT) were summarized in order to help scientists who communicate with general public.


Assuntos
Medicina Baseada em Evidências , Saúde Pública , Trítio/efeitos adversos , Carcinogênese/patologia , Humanos , Exposição à Radiação , Radiação Ionizante
5.
Sci Rep ; 11(1): 7001, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33772061

RESUMO

To clarify the health risks of internal radiation exposure, it is important to investigate the radiological effects of local exposure at cell levels from radioactive materials taken up by organs. Focusing on the response of cell populations post-irradiation, X-ray microbeams are very effective at reproducing the effects of local exposure within an internal exposure in vitro. The present study aims to clarify the effects of local exposure by investigating the response of normal human cell (MRC-5) populations irradiated with X-ray microbeams of different beam sizes to DNA damage. The populations of MRC-5 were locally irradiated with X-ray microbeams of 1 Gy at 0.02-1.89 mm2 field sizes, and analyzed whether the number of 53BP1 foci as DSB (DNA double strand break) per cell changed with the field size. We found that even at the same dose, the number of DSB per cell increased depending on the X-irradiated field size on the cell population. This result indicated that DNA damage repair of X-irradiated cells might be enhanced in small size fields surrounded by non-irradiated cells. This study suggests that X-irradiated cells received some signal (a rescue signal) from surrounding non-irradiated cells may be involved in the response of cell populations post-irradiation.


Assuntos
Proliferação de Células/efeitos da radiação , Radioisótopos de Césio/toxicidade , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Terapia por Raios X/efeitos adversos , Raios X/efeitos adversos , Dano ao DNA/efeitos da radiação , Reparo do DNA/genética , Humanos , Pulmão/patologia , Pulmão/efeitos da radiação
6.
Radiat Res ; 194(6): 698-706, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33348374

RESUMO

Spatially fractionated radiation therapy (SFRT) has been based on the delivery of a single high-dose fraction to a large treatment area that has been divided into several smaller fields, reducing the overall toxicity and adverse effects. Complementary microbeam studies have also shown an effective tissue-sparing effect (TSE) in various tissue types and species after spatially fractionated irradiation at the microscale level; however, the underlying biological mechanism remains elusive. In the current study, using the combination of an ex vivo mouse spermatogenesis model and high-precision X-ray microbeams, we revealed the significant TSE for maintaining spermatogenesis after spatially fractionated microbeam irradiation. We used the following ratios of the irradiated to nonirradiated areas: 50:50, 150:50 and 350:50 µm-slit, where approximately 50, 75 and 87.5% of the sample was irradiated (using center-to-center distances of 100, 200 and 400 µm, respectively). We found that the 50 and 75% micro-slit irradiated testicular tissues showed an almost unadulterated TSE for spermatogenesis, whereas the 87.5% micro-slit irradiated tissues showed an incomplete TSE. This suggests that the TSE efficiency for spermatogenesis is dependent on the size of the nonirradiated spermatogonial stem cell pool in the irradiated testicular tissues. In addition, there would be a spatiotemporal limitation of stem cell migration/competition, resulting in the insufficient TSE for 87.5% micro-slit irradiated tissues. These stem cell characteristics are essential for the accurate prediction of tissue-level responses during or after SFRT, indicating the clinical potential for achieving better outcomes while preventing adverse effects.


Assuntos
Fracionamento da Dose de Radiação , Espermatogênese/efeitos da radiação , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Síncrotrons
7.
Radiat Res ; 194(5): 511-518, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33045074

RESUMO

Several studies have demonstrated that mitochondria are critically involved in the pleiotropic manifestation of radiation effects. While conventional whole-cell irradiation compromises the function of mitochondria, the effects of subcellular targeted radiation are not yet fully understood. In this study, normal human diploid cells with cell-cycle indicators were irradiated using a synchrotron X-ray microbeam, and mitochondrial membrane potential was quantified by JC-1 over the 72-h period postirradiation. Cytoplasmic irradiation was observed to temporarily enlarge the mitochondrial area with high membrane potential, while the total mitochondrial area did not change significantly. Unexpectedly, cell-nucleus irradiation promoted a similar increase not only in the mitochondrial areas with high membrane potential, but also in those with low membrane potential, which gave rise to the apparent increase in the total mitochondrial area. Augmentation of the mitochondrial area with low membrane potential was predominantly observed among G1 cells, suggesting that nucleus irradiation during the G1 phase regulated the mitochondrial dynamics of the cytoplasm, presumably through DNA damage in the nucleus.


Assuntos
Núcleo Celular/efeitos da radiação , Fibroblastos/efeitos da radiação , Mitocôndrias/efeitos da radiação , Benzimidazóis , Carbocianinas , Células Cultivadas , Citoplasma/efeitos da radiação , Dano ao DNA , Fibroblastos/ultraestrutura , Corantes Fluorescentes , Fase G1/efeitos da radiação , Humanos , Potencial da Membrana Mitocondrial/efeitos da radiação , Microscopia de Fluorescência , Tamanho Mitocondrial/efeitos da radiação , Síncrotrons
8.
J Med Imaging (Bellingham) ; 7(2): 026001, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32206685

RESUMO

Purpose: High-resolution cardiac imaging and fiber analysis methods are required to understand cardiac anatomy. Although refraction-contrast x-ray CT (RCT) has high soft tissue contrast, it cannot be commonly used because it requires a synchrotron system. Microfocus x-ray CT ( µ CT ) is another commercially available imaging modality. Approach: We evaluate the usefulness of µ CT for analyzing fibers by quantitatively and objectively comparing the results with RCT. To do so, we scanned a rabbit heart by both modalities with our original protocol of prepared materials and compared their image-based analysis results, including fiber orientation estimation and fiber tracking. Results: Fiber orientations estimated by two modalities were closely resembled under the correlation coefficient of 0.63. Tracked fibers from both modalities matched well the anatomical knowledge that fiber orientations are different inside and outside of the left ventricle. However, the µ CT volume caused incorrect tracking around the boundaries caused by stitching scanning. Conclusions: Our experimental results demonstrated that µ CT scanning can be used for cardiac fiber analysis, although further investigation is required in the differences of fiber analysis results on RCT and µ CT .

9.
Int J Radiat Biol ; 96(5): 622-627, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31976790

RESUMO

Purpose: A study is presented of the irradiation of cancerous cervical cell line HeLa loaded with a platinum salt, betamethasone and deoxyglucose. The presence of the platinum increases the free-radical concentration and augments the cell death rate, whereas betamethasone or deoxyglucose induces radiosensitization by the alteration of metabolic pathways. Two by two combinations of these chemicals are made to investigate the possible benefit when two radiosensitizers are present. A model is proposed to understand the results of the presence of two modifying agents on the dose effects.Materials and methods: The cells were incubated for 6 h in the presence of the following molecules: dichloro terpyridine platinum, concentration C = 350 µM, betamethasone and deoxyglucose with concentrations of C = 0.2 µM and C = 6 mM, respectively. The cells were subsequently irradiated by carbon C6+ ion 290 MeV/amu up to a dose of 2.5 Gy, under atmospheric conditions.Results: The presence of the platinum salt or bethamethasone augments the cell death rate. The combination of betamethasone with the platinum salt also increases the cell death rate, but less than for the platinum salt alone. The explanation is that any radiosensitizer also behaves as a scavenger of free radicals. This dual behavior should be considered in any optimization of the design of radiosensitizers when different ionizing particles are used.


Assuntos
Radical Hidroxila , Terapia com Prótons , Radiossensibilizantes/farmacologia , Betametasona/farmacologia , Desoxiglucose/farmacologia , Células HeLa , Humanos , Transferência Linear de Energia , Modelos Teóricos , Compostos de Platina/farmacologia
10.
J Radiat Res ; 61(2): 237-242, 2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-31904079

RESUMO

The aim of this study was to determine whether membrane lipid peroxidation in mammalian cells is enhanced by X-ray irradiation at the K-shell resonance absorption peak of phosphorus. A549 and wild-type p53-transfected H1299 (H1299/wtp53) cell lines derived from human lung carcinoma were irradiated with monoenergetic X-rays at 2.153 keV, the phosphorus K-shell resonance absorption peak, or those at 2.147 or 2.160 keV, which are off peaks. Immunofluorescence staining for 4-hydroxy-2-nonenal (HNE), a lipid peroxidation product, was used as marker for protein modification. In both cell lines, the HNE production was significantly enhanced after irradiation at 2.153 keV compared to sham-irradiation. The enhancement (E) was calculated as the ratio of the fluorescence intensity of irradiated cells to that of sham-irradiated cells. In both the cell lines, E2.153 was significantly larger than E2.147 and no significant difference between E2.147 and E2.160 was observed. The extra enhancement at 2.153 keV was possibly caused by energy transition within the phosphorus K-shell resonance absorption. Our results indicate that membrane lipid peroxidation in cells is enhanced by the Auger effect after irradiation at the K-shell resonance absorption peak of phosphorus rather than by the photoelectric effect of the constituent atoms in the membrane lipid at 2.147 keV.


Assuntos
Membrana Celular/metabolismo , Peroxidação de Lipídeos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Fósforo/química , Aldeídos/química , Linhagem Celular Tumoral , Fluorescência , Humanos , Doses de Radiação , Raios X
11.
Sci Rep ; 9(1): 12618, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575926

RESUMO

Microbeam radiotherapy (MRT) is based on a spatial fractionation of synchrotron X-ray microbeams at the microscale level. Although the tissue-sparing effect (TSE) in response to non-uniform radiation fields was recognized more than one century ago, the TSE of MRT in the testes and its clinical importance for preventing male fertility remain to be determined. In this study, using the combination of MRT techniques and a unique ex vivo testes organ culture, we show, for the first time, the MRT-mediated TSE for the preservation of spermatogenesis. Furthermore, our high-precision microbeam analysis revealed that the survival and potential migration steps of the non-irradiated germ stem cells in the irradiated testes tissue would be needed for the effective TSE for spermatogenesis. Our findings indicated the distribution of dose irradiated in the testes at the microscale level is of clinical importance for delivering high doses of radiation to the tumor, while still preserving male fertility.


Assuntos
Movimento Celular/efeitos da radiação , Preservação da Fertilidade , Células Germinativas , Espermatogênese/efeitos da radiação , Testículo , Terapia por Raios X , Animais , Sobrevivência Celular/efeitos da radiação , Células Germinativas/metabolismo , Células Germinativas/patologia , Masculino , Camundongos , Camundongos Transgênicos , Testículo/metabolismo , Testículo/patologia
12.
Radiat Res ; 189(6): 661-667, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29595376

RESUMO

The formation of sperm by the testes through the process of spermatogenesis is highly radiosensitive and can be affected by environmental, occupational and therapeutic radiation exposures. In this study, we applied an ex vivo mouse testis organ culture as an experimental model of spermatogenesis to investigate the radiobiological effects and to demonstrate its feasibility as a tool to determine response to complex, modulated radiation fields. This model uses Acr-GFP transgenic mice, which express the marker green fluorescent proteins specific for meiosis to allow observation of functional changes in real-time that can be used to analyze radiation-induced changes in the process of spermatogenesis. Our results showed that the model can accurately reproduce radiation-induced male germ cell toxicity, such as temporary infertility and permanent sterility. Furthermore, using a monochromatic X-ray microbeam, we applied this model to investigate the effects of heterogeneous radiation fields on testis tissue ex vivo. Our model represents a unique application in the field, which offers significant potential for gaining further mechanistic insight into radiation effects on the process of spermatogenesis.


Assuntos
Radiobiologia , Espermatogênese/efeitos da radiação , Animais , Relação Dose-Resposta à Radiação , Histonas/metabolismo , Masculino , Camundongos , Testículo/citologia , Testículo/efeitos da radiação
13.
Int J Radiat Biol ; 92(11): 739-744, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27537347

RESUMO

PURPOSE: To establish a new experimental technique to explore the photoelectric and subsequent Auger effects on the cell cycles of soft X-ray microbeam-irradiated cells and unirradiated bystander cells in a single colony. MATERIALS AND METHODS: Several cells located in the center of a microcolony of HeLa-Fucci cells consisting of 20-80 cells were irradiated with soft X-ray (5.35 keV) microbeam using synchrotron radiation as a light source. All cells in the colony were tracked for 72 h by time-lapse microscopy imaging. Cell cycle progression, division, and death of each cell in the movies obtained were analyzed by pedigree assay. The number of cell divisions in the microcolony was also determined. RESULTS: The fates of these cells were clarified by tracking both irradiated and unirradiated bystander cells. Irradiated cells showed significant cell cycle retardation, explosive cell death, or cell fusion after a few divisions. These serious effects were also observed in 15 and 26% of the bystander cells for 10 and 20 Gy irradiation, respectively, and frequently appeared in at least two daughter or granddaughter cells from a single-parent cell. CONCLUSIONS: We successfully tracked the fates of microbeam-irradiated cells and unirradiated bystander cells with live cell recordings, which have revealed the dynamics of soft X-ray irradiated and unirradiated bystander cells for the first time. Notably, cell deaths or cell cycle arrests frequently arose in closely related cells. These details would not have been revealed by a conventional immunostaining imaging method. Our approach promises to reveal the dynamic cellular effects of soft X-ray microbeam irradiation and subsequent Auger processes from various endpoints in future studies.


Assuntos
Apoptose/fisiologia , Apoptose/efeitos da radiação , Efeito Espectador/fisiologia , Efeito Espectador/efeitos da radiação , Ciclo Celular/fisiologia , Ciclo Celular/efeitos da radiação , Relação Dose-Resposta à Radiação , Elétrons , Células HeLa , Humanos , Doses de Radiação , Raios X
14.
Int J Radiat Biol ; 92(11): 724-732, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27185241

RESUMO

PURPOSE: To investigate an enhancement of DNA double-strand break (DSB) induction and cell killing effect by K-shell ionization of phosphorus atoms and Auger electrons on human cell lines. MATERIALS AND METHODS: Induction of DSB, DNA damage responses, cell cycle distributions, and cell killing effects were investigated after exposures of the cells with monochromatic synchrotron radiation soft X-rays of 2153 and 2147 eV, which were the resonance peak and off peak, respectively, of the K-shell photoabsorption of phosphorus. RESULTS: Higher biological effects in the cells irradiated with soft X-rays at 2153 eV than at 2147 eV were observed in (i) the efficiency of 53BP1/γ-H2AX co-localized foci formation per dose and residual number of foci, (ii) prolonged phosphorylation levels of DSB repair and/or cell cycle checkpoint related proteins and G2 arrest, (iii) the cell killing effects at the 10% survival level of normal human fibroblasts, HeLa cells, and human glioblastoma M059K cells (1.2-1.5 times higher) and that of human ataxia telangiectasia mutated (ATM)-defective cells and glioblastoma DNA-dependent protein kinase catalytic subunit (DNA-PKcs)-defective cells (1.2 times). CONCLUSION: The yield of DSB and partly less-reparable complex DNA damage induction in human cells was enhanced by K-shell photoabsorption of phosphorus and low-energy Auger electrons.


Assuntos
Apoptose/efeitos dos fármacos , Apoptose/genética , Dano ao DNA/genética , Neoplasias Experimentais/genética , Neoplasias Experimentais/radioterapia , Fósforo/efeitos da radiação , Absorção de Radiação , Linhagem Celular Tumoral , Relação Dose-Resposta à Radiação , Elétrons/uso terapêutico , Humanos , Neoplasias Experimentais/patologia , Dosagem Radioterapêutica , Resultado do Tratamento
15.
Int J Radiat Biol ; 91(1): 62-70, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25084840

RESUMO

PURPOSE: Radiation-induced bystander effects have important implications in radiotherapy. Their persistence in normal cells may contribute to risk of health hazards, including cancer. This study investigates the role of radiation quality and gap junction intercellular communication (GJIC) in the propagation of harmful effects in progeny of bystander cells. MATERIALS AND METHODS: Confluent human skin fibroblasts were exposed to microbeam radiations with different linear energy transfer (LET) at mean absorbed doses of 0.4 Gy by which 0.036-0.4% of the cells were directly targeted by radiation. Following 20 population doublings, the cells were harvested and assayed for micronucleus formation, gene mutation and protein oxidation. RESULTS: Our results showed that expression of stressful effects in the progeny of bystander cells is dependent on LET. The progeny of bystander cells exposed to X-rays (LET ∼6 keV/µm) or protons (LET ∼11 keV/µm) showed persistent oxidative stress, which correlated with increased micronucleus formation and mutation at the hypoxanthine-guanine phosphoribosyl-transferase (HPRT) locus. Such effects were not observed after irradiation by carbon ions (LET ∼103 keV/µm). Interestingly, progeny of bystander cells from cultures exposed to protons or carbon ions under conditions where GJIC was inhibited harbored reduced oxidative and genetic damage. This mitigating effect was not detected when the cultures were exposed to X-rays. CONCLUSIONS: These findings suggest that cellular exposure to proton and heavy charged particle with LET properties similar to those used here can reduce the risk of lesions associated with cancer. The ability of cells to communicate via gap junctions at the time of irradiation appears to impact residual damage in progeny of bystander cells.


Assuntos
Efeito Espectador/efeitos da radiação , Carbono/efeitos adversos , Fibroblastos/citologia , Fibroblastos/efeitos da radiação , Neoplasias Induzidas por Radiação/etiologia , Prótons/efeitos adversos , Dano ao DNA , Relação Dose-Resposta à Radiação , Fibroblastos/metabolismo , Junções Comunicantes/efeitos da radiação , Humanos , Transferência Linear de Energia , Neoplasias Induzidas por Radiação/patologia , Estresse Oxidativo/efeitos da radiação , Risco , Fatores de Tempo , Raios X/efeitos adversos
16.
Nanomedicine ; 10(8): 1601-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24846523

RESUMO

Nanomedicine is proposed as a novel strategy to improve the performance of radiotherapy. High-Z nanoparticles are known to enhance the effects of ionizing radiation. Recently, multimodal nanoparticles such as gadolinium-based nanoagents were proposed to amplify the effects of x-rays and g-rays and to improve MRI diagnosis. For tumors sited in sensitive tissues, childhood cases and radioresistant cancers, hadrontherapy is considered superior to x-rays and g-rays. Hadrontherapy, based on fast ion radiation, has the advantage of avoiding damage to the tissues behind the tumor; however, the damage caused in front of the tumor is its major limitation. Here, we demonstrate that multimodal gadolinium-based nanoparticles amplify cell death with fast ions used as radiation. Molecular scale experiments give insights into the mechanisms underlying the amplification of radiation effects. This proof-of-concept opens up novel perspectives for multimodal nanomedicine in hadrontherapy, ultimately reducing negative radiation effects in healthy tissues in front of the tumor. FROM THE CLINICAL EDITOR: Gadolinium-chelating polysiloxane nanoparticles were previously reported to amplify the anti-tumor effects of x-rays and g-rays and to serve as MRI contrast agents. Fast ion radiation-based hadrontherapy avoids damage to the tissues behind the tumor, with a major limitation of tissue damage in front of the tumor. This study demonstrates a potential role for the above nanoagents in optimizing hadrontherapy with preventive effects in healthy tissue and amplified cell death in the tumor.


Assuntos
Gadolínio/química , Radioterapia com Íons Pesados/métodos , Nanopartículas/química , Animais , Células CHO , Cricetinae , Cricetulus , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Nanomedicina/métodos
17.
Radiat Res ; 180(4): 367-75, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23987132

RESUMO

Understanding the mechanisms underlying the bystander effects of low doses/low fluences of low- or high-linear energy transfer (LET) radiation is relevant to radiotherapy and radiation protection. Here, we investigated the role of gap-junction intercellular communication (GJIC) in the propagation of stressful effects in confluent normal human fibroblast cultures wherein only 0.036-0.144% of cells in the population were traversed by primary radiation tracks. Confluent cells were exposed to graded doses from monochromatic 5.35 keV X ray (LET ~6 keV/µm), 18.3 MeV/u carbon ion (LET ~103 keV/µm), 13 MeV/u neon ion (LET ~380 keV/µm) or 11.5 MeV/u argon ion (LET ~1,260 keV/µm) microbeams in the presence or absence of 18-α-glycyrrhetinic acid (AGA), an inhibitor of GJIC. After 4 h incubation at 37°C, the cells were subcultured and assayed for micronucleus (MN) formation. Micronuclei were induced in a greater fraction of cells than expected based on the fraction of cells targeted by primary radiation, and the effect occurred in a dose-dependent manner with any of the radiation sources. Interestingly, MN formation for the heavy-ion microbeam irradiation in the absence of AGA was higher than in its presence at high mean absorbed doses. In contrast, there were no significant differences in cell cultures exposed to X-ray microbeam irradiation in presence or absence of AGA. This showed that the inhibition of GJIC depressed the enhancement of MN formation in bystander cells from cultures exposed to high-LET radiation but not low-LET radiation. Bystander cells recipient of growth medium harvested from 5.35 keV X-irradiated cultures experienced stress manifested in the form of excess micronucleus formation. Together, the results support the involvement of both junctional communication and secreted factor(s) in the propagation of radiation-induced stress to bystander cells. They highlight the important role of radiation quality and dose in the observed effects.


Assuntos
Efeito Espectador/efeitos da radiação , Fibroblastos/citologia , Fibroblastos/efeitos da radiação , Junções Comunicantes/efeitos da radiação , Células Cultivadas , Dano ao DNA , Relação Dose-Resposta à Radiação , Humanos , Transferência Linear de Energia , Método de Monte Carlo
18.
J Radiat Res ; 54(6): 1043-9, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23660275

RESUMO

The potential for carcinogenic risks is increased by radiation-induced bystander responses; these responses are the biological effects in unirradiated cells that receive signals from the neighboring irradiated cells. Bystander responses have attracted attention in modern radiobiology because they are characterized by non-linear responses to low-dose radiation. We used a synchrotron X-ray microbeam irradiation system developed at the Photon Factory, High Energy Accelerator Research Organization, KEK, and showed that nitric oxide (NO)-mediated bystander cell death increased biphasically in a dose-dependent manner. Here, we irradiated five cell nuclei using 10 × 10 µm(2) 5.35 keV X-ray beams and then measured the mutation frequency at the hypoxanthine-guanosine phosphoribosyl transferase (HPRT) locus in bystander cells. The mutation frequency with the null radiation dose was 2.6 × 10(-)(5) (background level), and the frequency decreased to 5.3 × 10(-)(6) with a dose of approximately 1 Gy (absorbed dose in the nucleus of irradiated cells). At high doses, the mutation frequency returned to the background level. A similar biphasic dose-response effect was observed for bystander cell death. Furthermore, we found that incubation with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO), a specific scavenger of NO, suppressed not only the biphasic increase in bystander cell death but also the biphasic reduction in mutation frequency of bystander cells. These results indicate that the increase in bystander cell death involves mechanisms that suppress mutagenesis. This study has thus shown that radiation-induced bystander responses could affect processes that protect the cell against naturally occurring alterations such as mutations.


Assuntos
Efeito Espectador/fisiologia , Efeito Espectador/efeitos da radiação , Aberrações Cromossômicas/efeitos da radiação , Fibroblastos/fisiologia , Mutação/genética , Óxido Nítrico/metabolismo , Animais , Apoptose/genética , Apoptose/efeitos da radiação , Linhagem Celular , Cricetinae , Cricetulus , Fibroblastos/efeitos da radiação , Mutação/efeitos da radiação , Doses de Radiação
19.
Nanotechnology ; 23(7): 078001; author reply 078002, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22261552

RESUMO

A recent paper (Kim et al 2010 Nanotechnology 21 425102) presented results on the combination of irradiation by atomic ions of cells loaded by particles made of heavy atoms. They propose that the projectile induced x-rays emission (PIXE) mechanism has an important contribution to the enhancement of the cell death rate. Experiments made in our group to study the effects of such a combination have shown that the Auger effect induced in the high-Z atoms and the following induction of surrounding water radiolysis has an important contribution to the enhancement of the cell death rate. In the light of our studies we propose an alternative interpretation of the results presented in the paper by Kim et al.


Assuntos
Ouro/uso terapêutico , Ferro/uso terapêutico , Nanopartículas Metálicas/uso terapêutico , Neoplasias/radioterapia , Animais , Humanos
20.
J Synchrotron Radiat ; 18(Pt 4): 630-6, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21685681

RESUMO

A novel synchrotron-based approach, known as microbeam radiation therapy (MRT), currently shows considerable promise in increased tumour control and reduced normal tissue damage compared with conventional radiotherapy. Different microbeam widths and separations were investigated using a controlled cell culture system and monoenergetic (5.35 keV) synchrotron X-rays in order to gain further insight into the underlying cellular response to MRT. DNA damage and repair was measured using fluorescent antibodies against phosphorylated histone H2AX, which also allowed us to verify the exact location of the microbeam path. Beam dimensions that reproduced promising MRT strategies were used to identify useful methods to study the underpinnings of MRT. These studies include the investigation of different spatial configurations on bystander effects. γH2AX foci number were robustly induced in directly hit cells and considerable DNA double-strand break repair occurred by 12 h post-10 Gy irradiation; however, many cells had some γH2AX foci at the 12 h time point. γH2AX foci at later time points did not directly correspond with the targeted regions suggesting cell movement or bystander effects as a potential mechanism for MRT effectiveness. Partial irradiation of single nuclei was also investigated and in most cases γH2AX foci were not observed outside the field of irradiation within 1 h after irradiation indicating very little chromatin movement in this time frame. These studies contribute to the understanding of the fundamental radiation biology relating to the MRT response, a potential new therapy for cancer patients.


Assuntos
Dano ao DNA , Reparo do DNA , Animais , Linhagem Celular , Cricetinae , Cricetulus , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...