Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 16366, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30377298

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

2.
Sci Rep ; 7(1): 8357, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827591

RESUMO

The problem of the ballistic electron tunneling is considered in magnetic tunnel junction with embedded non-magnetic nanoparticles (NP-MTJ), which creates additional conducting middle layer. The strong temperature impact was found in the system with averaged NP diameter d av < 1.8 nm. Temperature simulation is consistent with experimental observations showing the transition between dip and classical dome-like tunneling magnetoresistance (TMR) voltage behaviors. The low temperature approach also predicts step-like TMR and quantized in-plane spin transfer torque (STT) effects. The robust asymmetric STT respond is found due to voltage sign inversion in NP-MTJs with barrier asymmetry. Furthermore, it is shown how size distribution of NPs as well as quantization rules modify the spin-current filtering properties of the nanoparticles in ballistic regime. Different quantization rules for the transverse component of the wave vector are considered to overpass the dimensional threshold (d av ≈ 1.8 nm) between quantum well and bulk-assisted states of the middle layer.

3.
Sci Rep ; 5: 18026, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26681336

RESUMO

The tunnel magnetoresistance (TMR) in the magnetic tunnel junction (MTJ) with embedded nanoparticles (NPs) was calculated in range of the quantum-ballistic model. The simulation was performed for electron tunneling through the insulating layer with embedded magnetic and non-magnetic NPs within the approach of the double barrier subsystem connected in parallel to the single barrier one. This model can be applied for both MTJs with in-plane magnetization and perpendicular one. We also calculated the in-plane component of the spin transfer torque (STT) versus the applied voltage in MTJs with magnetic NPs and determined that its value can be much larger than in single barrier system (SBS) for the same tunneling thickness. The reported simulation reproduces experimental data of the TMR suppression and peak-like TMR anomalies at low voltages available in leterature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...