Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Therm Biol ; 110: 103378, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36462845

RESUMO

At critically high temperatures, atrioventricular (AV) block causes ventricular bradycardia and collapse of cardiac output in fish. Here, the possible role of the AV canal in high temperature-induced heart failure was examined. To this end, optical mapping was used to measure action potential (AP) conduction in isolated AV junction preparations of the rainbow trout (Oncorhynchus mykiss) heart during acute warming/cooling in the presence of 4 or 8 mM external K+ concentration. The preparation included the AV canal and some atrial and ventricular tissue at its edges, and it was paced either from atrial or ventricular side at a frequency of 0.67 Hz (40 beats min-1) to trigger forward (anterograde) and backward (retrograde) conduction, respectively. The propagation of AP was fast in atrial and ventricular tissues, but much slower in the AV canal, causing an AV delay. Acute warming from 15 °C to 27 °C or cooling from 15 °C to 5 °C did not impair AP conduction in the AV canal, as both anterograde and retrograde excitations propagated regularly through the AV canal. In contrast, anterograde conduction through the AV canal did not trigger ventricular excitation at the boundary zone between the AV canal and the ventricle when extracellular K+ concentration was raised from 4 mM to 8 mM at 27 °C. Also, the retrograde conduction was blocked at the border between the AV canal and the atrium in high K+ at 27 °C. These findings suggest that the AV canal is resistant against high temperatures (and high K+), but the ventricular muscle cannot be excited by APs coming from the AV canal when temperature and external K+ concentration are simultaneously elevated. Therefore, bradycardia at high temperatures in fish may occur due to inability of AP of the AV canal to trigger ventricular AP at the junctional zone between the AV canal and the proximal part of the ventricle.


Assuntos
Hiperpotassemia , Oncorhynchus mykiss , Animais , Potenciais de Ação , Bradicardia , Hiperpotassemia/complicações , Hiperpotassemia/veterinária , Temperatura Alta/efeitos adversos
2.
J Physiol ; 599(11): 2803-2821, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33823063

RESUMO

KEY POINTS: The developmental changes of the caval (SVC) and pulmonary vein (PV) myocardium electrophysiology are traced throughout postnatal ontogenesis. The myocardium in SVC as well as in PV demonstrate age-dependent differences in the ability to maintain resting membrane potential, to manifest automaticity in a form of ectopic action potentials in basal condition and in responses to the adrenergic stimulation. Electrophysiological characteristics of two distinct types of thoracic vein myocardium change in an opposite manner during early postnatal ontogenesis with increased proarrhythmicity of pulmonary and decreased automaticity in caval veins. Predisposition of PV cardiac tissue to proarrhythmycity develops during ontogenesis in time correlation with the establishment of sympathetic innervation of the tissue. The electrophysiological properties of caval vein cardiac tissue shift from a pacemaker-like phenotype to atrial phenotype in accompaniment with sympathetic nerve growth and adrenergic receptor expression changes. ABSTRACT: The thoracic vein myocardium is considered as a main source for atrial fibrillation initiation due to its high susceptibility to ectopic activity. The mechanism by which and when pulmonary (PV) and superior vena cava (SVC) became proarrhythmic during postnatal ontogenesis is still unknown. In this study, we traced postnatal changes of electrophysiology in a correlation with the sympathetic innervation and adrenergic receptor distribution to reveal developmental differences in proarrhythmicity occurrence in PV and SVC myocardium. A standard microelectrode technique was used to assess the changes in ability to maintain resting membrane potential (RMP), generate spontaneous action potentials (SAP) and adrenergically induced ectopy in multicellular SVC and PV preparations of rats of different postnatal ages. Immunofluorescence imaging was used to trace postnatal changes in sympathetic innervation, ß1- and α1A-adrenergic receptor (AR) distribution. We revealed that the ability to generate SAP and susceptibility to adrenergic stimulation changes during postnatal ontogenesis in an opposite manner in PV and SVC myocardium. While SAP occurrence decreases with age in SVC myocardium, it significantly increases in PV cardiac tissue. PV myocardium starts to demonstrate RMP instability and proarrhythmic activity from the 14th day of postnatal life which correlates with the appearance of the sympathetic innervation of the thoracic veins. In addition, postnatal attenuation of SVC myocardium automaticity occurs concomitantly with sympathetic innervation establishment and increase in ß1-ARs, but not α1A-AR levels. Our results support the contention that SVC and PV myocardium electrophysiology change during postnatal development, resulting in higher PV proarrhythmicity in adults.


Assuntos
Fibrilação Atrial , Veias Pulmonares , Animais , Catecolaminas , Átrios do Coração , Miocárdio , Ratos , Veia Cava Superior
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...