Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 631(8021): 670-677, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38987591

RESUMO

In all organisms, regulation of gene expression must be adjusted to meet cellular requirements and frequently involves helix-turn-helix (HTH) domain proteins1. For instance, in the arms race between bacteria and bacteriophages, rapid expression of phage anti-CRISPR (acr) genes upon infection enables evasion from CRISPR-Cas defence; transcription is then repressed by an HTH-domain-containing anti-CRISPR-associated (Aca) protein, probably to reduce fitness costs from excessive expression2-5. However, how a single HTH regulator adjusts anti-CRISPR production to cope with increasing phage genome copies and accumulating acr mRNA is unknown. Here we show that the HTH domain of the regulator Aca2, in addition to repressing Acr synthesis transcriptionally through DNA binding, inhibits translation of mRNAs by binding conserved RNA stem-loops and blocking ribosome access. The cryo-electron microscopy structure of the approximately 40 kDa Aca2-RNA complex demonstrates how the versatile HTH domain specifically discriminates RNA from DNA binding sites. These combined regulatory modes are widespread in the Aca2 family and facilitate CRISPR-Cas inhibition in the face of rapid phage DNA replication without toxic acr overexpression. Given the ubiquity of HTH-domain-containing proteins, it is anticipated that many more of them elicit regulatory control by dual DNA and RNA binding.


Assuntos
Bacteriófagos , Sistemas CRISPR-Cas , Microscopia Crioeletrônica , Modelos Moleculares , Bacteriófagos/metabolismo , Bacteriófagos/genética , Bacteriófagos/química , Sistemas CRISPR-Cas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/química , Biossíntese de Proteínas , Sequências Hélice-Volta-Hélice , Ribossomos/metabolismo , Ribossomos/química , Sítios de Ligação , Domínios Proteicos , Proteínas Virais/metabolismo , Proteínas Virais/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/química , Conformação de Ácido Nucleico , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química , RNA Viral/metabolismo , RNA Viral/genética , RNA Viral/química , Transcrição Gênica
2.
Nat Commun ; 14(1): 4644, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591829

RESUMO

Mycobacterium tuberculosis, the bacterium responsible for human tuberculosis, has a genome encoding a remarkably high number of toxin-antitoxin systems of largely unknown function. We have recently shown that the M. tuberculosis genome encodes four of a widespread, MenAT family of nucleotidyltransferase toxin-antitoxin systems. In this study we characterize MenAT1, using tRNA sequencing to demonstrate MenT1 tRNA modification activity. MenT1 activity is blocked by MenA1, a short protein antitoxin unrelated to the MenA3 kinase. X-ray crystallographic analysis shows blockage of the conserved MenT fold by asymmetric binding of MenA1 across two MenT1 protomers, forming a heterotrimeric toxin-antitoxin complex. Finally, we also demonstrate tRNA modification by toxin MenT4, indicating conserved activity across the MenT family. Our study highlights variation in tRNA target preferences by MenT toxins, selective use of nucleotide substrates, and diverse modes of MenA antitoxin activity.


Assuntos
Antitoxinas , Mycobacterium tuberculosis , Toxinas Biológicas , Humanos , Antitoxinas/genética , Nucleotidiltransferases , Nucleotídeos , RNA de Transferência/genética
3.
J Struct Biol ; 213(3): 107752, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34116143

RESUMO

Bacteria use adaptive CRISPR-Cas immune mechanisms to protect from invasion by bacteriophages and other mobile genetic elements. In response, bacteriophages and mobile genetic elements have co-evolved anti-CRISPR proteins to inhibit the bacterial defense. We and others have previously shown that anti-CRISPR associated (Aca) proteins can regulate this anti-CRISPR counter-attack. Here, we report the first structure of an Aca protein, the Aca2 DNA-binding transcriptional autorepressor from Pectobacterium carotovorum bacteriophage ZF40, determined to 1.34 Å. Aca2 presents a conserved N-terminal helix-turn-helix DNA-binding domain and a previously uncharacterized C-terminal dimerization domain. Dimerization positions the Aca2 recognition helices for insertion into the major grooves of target DNA, supporting its role in regulating anti-CRISPRs. Furthermore, database comparisons identified uncharacterized Aca2 structural homologs in pathogenic bacteria, suggesting that Aca2 represents the first characterized member of a more widespread family of transcriptional regulators.


Assuntos
Bacteriófagos , Sistemas CRISPR-Cas , Bactérias , Bacteriófagos/química , Bacteriófagos/genética , Sistemas CRISPR-Cas/genética , Ligação Proteica , Fatores de Transcrição/genética
4.
Sci Adv ; 6(31): eabb6651, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32923609

RESUMO

Toxin-antitoxin systems are widespread stress-responsive elements, many of whose functions remain largely unknown. Here, we characterize the four DUF1814-family nucleotidyltransferase-like toxins (MenT1-4) encoded by the human pathogen Mycobacterium tuberculosis. Toxin MenT3 inhibited growth of M. tuberculosis when not antagonized by its cognate antitoxin, MenA3. We solved the structures of toxins MenT3 and MenT4 to 1.6 and 1.2 Å resolution, respectively, and identified the biochemical activity and target of MenT3. MenT3 blocked in vitro protein expression and prevented tRNA charging in vivo. MenT3 added pyrimidines (C or U) to the 3'-CCA acceptor stems of uncharged tRNAs and exhibited strong substrate specificity in vitro, preferentially targeting tRNASer from among the 45 M. tuberculosis tRNAs. Our study identifies a previously unknown mechanism that expands the range of enzymatic activities used by bacterial toxins, uncovering a new way to block protein synthesis and potentially treat tuberculosis and other infections.


Assuntos
Mycobacterium tuberculosis , Sistemas Toxina-Antitoxina , Tuberculose , Proteínas de Bactérias/metabolismo , Humanos , Mycobacterium tuberculosis/genética , Nucleotidiltransferases/metabolismo , RNA de Transferência/metabolismo , Sistemas Toxina-Antitoxina/genética
5.
Biochem J ; 477(12): 2401-2419, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32519742

RESUMO

Toxin-antitoxin systems play key roles in bacterial adaptation, including protection from antibiotic assault and infection by bacteriophages. The type IV toxin-antitoxin system AbiE encodes a DUF1814 nucleotidyltransferase-like toxin, and a two-domain antitoxin. In Streptococcus agalactiae, the antitoxin AbiEi negatively autoregulates abiE expression through positively co-operative binding to inverted repeats within the promoter. The human pathogen Mycobacterium tuberculosis encodes four DUF1814 putative toxins, two of which have antitoxins homologous to AbiEi. One such M. tuberculosis antitoxin, named Rv2827c, is required for growth and whilst the structure has previously been solved, the mode of regulation is unknown. To complete the gaps in our understanding, we first solved the structure of S. agalactiae AbiEi to 1.83 Šresolution for comparison with M. tuberculosis Rv2827c. AbiEi contains an N-terminal DNA binding domain and C-terminal antitoxicity domain, with bilateral faces of opposing charge. The overall AbiEi fold is similar to Rv2827c, though smaller, and with a 65° difference in C-terminal domain orientation. We further demonstrate that, like AbiEi, Rv2827c can autoregulate toxin-antitoxin operon expression. In contrast with AbiEi, the Prv2827c promoter contains two sets of inverted repeats, which bind Rv2827c with differing affinities depending on the sequence consensus. Surprisingly, Rv2827c bound with negative co-operativity to the full Prv2827c promoter, demonstrating an unexpectedly complex form of transcriptional regulation.


Assuntos
Antitoxinas/metabolismo , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Regulação Bacteriana da Expressão Gênica , Homeostase , Sequências Repetidas Invertidas , Sistemas Toxina-Antitoxina/genética , Antitoxinas/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Moleculares , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/metabolismo , Óperon , Regiões Promotoras Genéticas , Conformação Proteica , Streptococcus agalactiae/genética , Streptococcus agalactiae/crescimento & desenvolvimento , Streptococcus agalactiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...