Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 29(20): 6194-200, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23659455

RESUMO

Liquid-phase electronic circuits are patterned on an elastomer substrate with a microcontact printer. The printer head dips into a pool of a liquid-phase gallium-indium alloy, e.g., eutectic gallium-indium (EGaIn) or gallium-indium-tin (Galinstan), and deposits a single drop on a silicone elastomer substrate. After patterned deposition, the liquid-phase circuit is sealed with an additional layer of silicone elastomer. We also demonstrate patterned deposition of the liquid-phase GaIn alloy with a molded polydimethylsiloxane stamp that is manually inked and pressed into an elastomer substrate. As with other liquid-phase electronics produced through needle injection or masked deposition, the circuit is elastically deformable and can be stretched to several times its natural length without losing electronic functionality. In contrast to existing fabrication techniques, microcontact printing and stamp lithography can be used to produce circuits with any planar geometric feature, including electrodes with large planar area, intersecting and closed-loop wires, and combs with multiple terminal electrodes. In air, the surface of the coalesced droplets oxidize to form a thin oxide skin that preserves the shape of the circuit during sealing. This first demonstration of soft-lithography fabrication with liquid-phase GaIn alloy expands the space of allowable circuit geometries and eliminates the need for mold or mask fabrication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...