Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 4850, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418542

RESUMO

Division of labour is widely thought to increase the task efficiency of eusocial insects. Workers can switch their task to compensate for sudden changes in demand, providing flexible task allocation. In combination with automated tracking technology, we developed a robotic system to precisely control and spatiotemporally manipulate floor temperature over days, which allowed us to predictably drive brood transport behaviour in colonies of the ant Camponotus floridanus. Our results indicate that a small number of workers, usually minors belonging to the nurse social group, are highly specialised for brood transport. There was no difference in the speed at which workers transported brood, suggesting that specialisation does not correlate with efficiency. Workers often started to transport the brood only after having identified a better location. There was no evidence that workers shared information about the presence of a better location. Notably, once brood transporters had been removed, none of the remaining workers performed this task, and the brood transport completely stopped. When brood transporters were returned to their colony, brood transport was immediately restored. Taken together, our study reveals that brood transport is an inflexible task, achieved through the synchronous actions of a few privately informed specialist workers.


Assuntos
Formigas , Animais , Comportamento Social , Comportamento Animal , Eficiência
2.
Adv Mater ; 33(40): e2102641, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34363246

RESUMO

Mechanobiology explores how forces regulate cell behaviors and what molecular machinery are responsible for the sensing, transduction, and modulation of mechanical cues. To this end, probing of cells cultured on planar substrates has served as a primary experimental setting for many decades. However, native extracellular matrices (ECMs) consist of fibrous protein assemblies where the physical properties spanning from the individual fiber to the network architecture can influence the transmission of forces to and from the cells. Here, a robotic manipulation platform that allows wireless, localized, and programmable deformation of an engineered fibrous ECM is introduced. A finite-element-based digital twin of the fiber network calibrated against measured local and global parameters enables the calculation of deformations and stresses generated by different magnetic actuation schemes across a range of network properties. Physiologically relevant mechanical forces are applied to cells cultured on the fiber network, statically or dynamically, revealing insights into the effects of matrix-borne forces and deformations as well as force-mediated matrix remodeling on cell migration and intracellular signaling. These capabilities are not matched by any existing approach, and this versatile platform has the potential to uncover fundamental mechanisms of mechanobiology in settings with greater relevance to living tissues.


Assuntos
Matriz Extracelular/química , Robótica , Animais , Adesão Celular , Movimento Celular , Análise de Elementos Finitos , Camundongos , Células NIH 3T3 , Oligopeptídeos/química , Tecnologia sem Fio
3.
Biol Open ; 5(10): 1493-1499, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27612512

RESUMO

Hydrodynamic performance of the marine mussel, Mytilus galloprovincialis, is studied with time-resolved particle image velocimetry. We evaluated inhalant flow, exhalant jet flow, suction performance and flow control capabilities of the mussels quantitatively. Inhalant flow structures of mussels are measured at the coronal plane for the first time in literature. Nutrient fluid is convected into the mussel by three-dimensional sink flow. Inhalant velocity reaches its highest magnitude inside the mussel mantle while it is accelerating outward from the mussels. We calculated pressure gradient at the coronal plane. As inhalant flow approaches the mussel shell tip, suction force generated by the inhalant flow increases and becomes significant at the shell tip. Likewise, exhalant jet flow regimes were studied for 17 mussels. Mussels can control their exhalant jet flow structure from a single potential core region to double potential core region or vice versa. Peak exhalant jet velocity generated by the mussels changes between 2.77 cm s-1 and 11.1 cm s-1 as a function of mussel cavity volume. Measurements of hydrodynamic dissipation at the sagittal plane revealed no interaction between the inhalant and exhalant jet flow, indicating energy-efficient synchronized pumping mechanism. This efficient pumping mechanism is associated with the flow-turning angle between inhalant and exhalant jet flows, ∼90° (s.d. 12°).

4.
PLoS One ; 11(8): e0161611, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27552150

RESUMO

The role of hemodynamic forces within the embryo as biomechanical regulators for cardiovascular morphogenesis, growth, and remodeling is well supported through the experimental studies. Furthermore, clinical experience suggests that perturbed flow disrupts the normal vascular growth process as one etiology for congenital heart diseases (CHD) and for fetal adaptation to CHD. However, the relationships between hemodynamics, gene expression and embryonic vascular growth are poorly defined due to the lack of concurrent, sequential in vivo data. In this study, a long-term, time-lapse optical coherence tomography (OCT) imaging campaign was conducted to acquire simultaneous blood velocity, pulsatile micro-pressure and morphometric data for 3 consecutive early embryonic stages in the chick embryo. In conjunction with the in vivo growth and hemodynamics data, in vitro reverse transcription polymerase chain reaction (RT-PCR) analysis was performed to track changes in transcript expression relevant to histogenesis and remodeling of the embryonic arterial wall. Our non-invasive extended OCT imaging technique for the microstructural data showed continuous vessel growth. OCT data coupled with the PIV technique revealed significant but intermitted increases in wall shear stress (WSS) between first and second assigned stages and a noticeable decrease afterwards. Growth rate, however, did not vary significantly throughout the embryonic period. Among all the genes studied, only the MMP-2 and CASP-3 expression levels remained unchanged during the time course. Concurrent relationships were obtained among the transcriptional modulation of the genes, vascular growth and hemodynamics-related changes. Further studies are indicated to determine cause and effect relationships and reversibility between mechanical and molecular regulation of vasculogenesis.


Assuntos
Artérias/embriologia , Artérias/metabolismo , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Hemodinâmica/genética , Animais , Apoptose/genética , Pressão Sanguínea , Proteínas Morfogenéticas Ósseas/metabolismo , Embrião de Galinha , Neovascularização Fisiológica/genética , Resistência ao Cisalhamento , Transdução de Sinais , Estresse Mecânico , Imagem com Lapso de Tempo , Tomografia de Coerência Óptica , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA