Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 320: 115939, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35947912

RESUMO

Wildfire is a key ecological event that alters vegetation and soil quality attributes including biochemical attributes at spatial scale. This knowledge can provide insights into the development of better rehabilitation or restoration strategies that depend on the ecological dynamics of vegetation, fungi, and animals. The present study aimed to understand the causes and consequences of spatial variability of soil organic carbon, microbial biomass C concentrations, and soil quality indices as impacted by wildfire in a red pine forest. This study was conducted using kriging and inverse distance neighborhood similarity (IDW) interpolations methods. The carbon stocks were significantly (P = 0.002) higher in burned areas compared to those of unburned areas by 255% whereas microbial biomass carbon and microbial respiration were significantly (P < 0.0001 and P = 0.02) lower in burned areas by 66% and 90%, The Pearson's correlation analysis showed that carbon stocks were positively correlated with pH (0.61), total nitrogen (0.60) and ash quantity (0.41), but negatively correlated with microbial biomass carbon (-0.46) and nitrogen (-0.61), and microbial respiration (-0.48). The IDW interpolation method better-predicted pH, bulk density, and microbial biomass carbon and nitrogen compared to kriging interpolation, whereas the kriging interpolation method was better than IDW interpolation for the other studied soil properties. We concluded that pH, EC, SOC, C/N, MR, MBC/SOC, and MBC/MBN can be reliable indicators to monitor the effect of wildfire on forest soils. The wildfire event increased soil carbon stocks, TN, pH, and qCO2, but decreased MBC and MBN.


Assuntos
Pinus , Incêndios Florestais , Biomassa , Carbono/análise , China , Florestas , Nitrogênio/análise , Solo/química , Microbiologia do Solo
2.
Microb Ecol ; 84(1): 153-167, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34432102

RESUMO

The forest floor is hotspot of several functions integral to the stability of forest ecosystems. However, seasonal variations in litter decomposition rate contribute to biochemical and structural heterogeneity in the forest floor carbon (C) and nutrient cycling. We investigated the influence of seasonal variations in litter layers' micro-climate (temperature and moisture content) and chemical characteristics such as pH, electrical conductivity (EC), total organic C (TOC), total nitrogen (TN), and C/N ratio on microbial respiration, biomass, and C use efficiency under mature (> 80 years stage age) pine, beech, and cedar forests in eastern Mediterranean Karstic ecosystems. In contrast to significantly higher microbial respiration in fall, winter, and spring under pine, beech, and cedar forests, the significantly lowest microbial biomass C (MBC) and microbial biomass N (MBN) were observed in winter under each forest. Microbial C use efficiency, measured as the metabolic quotient (qCO2 = CO2/MBC), varied strongly between forest stands and seasons but was generally higher in winter. The significant positive correlations between litter layer and microbial biomass C/N ratios, under beech and cedar forests, suggested strong CN stoichiometric coupling and microbial adaptation to substrate resource stoichiometry. qCO2 correlated significantly negatively with litter layers' temperature, positively with moisture content and EC. However, qCO2 had significant negative relationships with pH in pine and beech forests but significant positive under cedar forest. qCO2 showed significant positive relationships with C/N ratios under all forests but much stronger in beech and cedar forests suggesting higher C respired per unit MBC with an increase in C/N ratio. Despite variations between forest species, the highest MBC/TOC and MBN/TN ratios in fall indicated greater C and N incorporation into microbial biomass. Changes in MBC/MBN ratios under pine (9.62-10.6), beech (8.63-15.6), and cedar (7.32-16.2) forests indicated the shift in microbial communities as fungi have a higher C/N ratio than bacteria. Stepwise regression analysis further revealed that microbial respiration and biomass were controlled differently by litter layer characteristics in each forest. This study suggested that qCO2 independently or with other microbial indices can show litter layers' controls on organic matter turnover in Karst ecosystems and, taking into account the strong seasonal variations, can enhance the predictive potential of decomposition models.


Assuntos
Fagus , Microbiota , Pinus , Biomassa , Carbono/metabolismo , Florestas , Nitrogênio/metabolismo , Pinus/metabolismo , Estações do Ano , Solo/química , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...