Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Appl Biochem ; 70(1): 290-305, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35483889

RESUMO

The processive cellulase (CelO) is an important modular enzyme of Clostridium thermocellum. To study the effect of the carbohydrate-binding module (CBM3b) on the catalytic domain of CelO (GH5), four engineered derivatives of CelO were designed by truncation and terminal fusion of CBM3b. These are CBM at the N-terminus, native form (CelO-BC, 62 kDa); catalytic domain only (CelO-C, 42 kDa); CBM at the C-terminus (CelO-CB, 54 kDa) and CBM attached at both termini (CelO-BCB, 73 kDa). All constructs were cloned into pET22b (+) and expressed in Escherichia coli BL21 (DE3) star. The expression levels of CelO-C, CelO-CB, CelO-BC, and CelO-BCB were 35%, 35%, 30%, and 20%, respectively. The enzyme activities of CelO-C, CelO-CB, CelO-BC, and CelO-BCB against 1% regenerated amorphous cellulose (RAC) were 860, 758, 985, and 1208 units per µmole of the enzyme, respectively. The enzymes were partially purified from the lysate of E. coli cells by heat treatment followed by anion exchange FPLC purification. Against RAC, CelO-C, CelO-CB, CelO-BC, and CelO-BCB showed KM values of 32, 33, 45, and 43 mg⋅mL-1 and Vmax values of 3571, 3846, 3571, and 4545 U⋅min-1 , respectively. CBM3b at the N-terminus of GH5 linked through a P/T-rich linker was found to enhance the catalytic activity and thermostability of the enzyme.


Assuntos
Celulase , Clostridium thermocellum , Clostridium thermocellum/genética , Clostridium thermocellum/metabolismo , Celulase/genética , Celulase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Domínio Catalítico
2.
Chem Biol Drug Des ; 98(4): 604-619, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34148292

RESUMO

3CLpro is essential for SARS-CoV-2 replication and infection; its inhibition using small molecules is a potential therapeutic strategy. In this study, a comprehensive crystallography-guided fragment-based drug discovery approach was employed to design new inhibitors for SARS-CoV-2 3CLpro. All small molecules co-crystallized with SARS-CoV-2 3CLpro with structures deposited in the Protein Data Bank were used as inputs. Fragments sitting in the binding pocket (87) were grouped into eight geographical types. They were interactively coupled using various synthetically reasonable linkers to generate larger molecules with divalent binding modes taking advantage of two different fragments' interactions. In total, 1,251 compounds were proposed, and 7,158 stereoisomers were screened using Glide (standard precision and extra precision), AutoDock Vina, and Prime MMGBSA. The top 22 hits having conformations approaching the linear combination of their constituent fragments were selected for MD simulation on Desmond. MD simulation suggested 15 of these did adopt conformations very close to their constituent pieces with far higher binding affinity than either constituent domain alone. These structures could provide a starting point for the further design of SARS-CoV-2 3CLpro inhibitors with improved binding, and structures are provided.


Assuntos
Antivirais/química , Tratamento Farmacológico da COVID-19 , SARS-CoV-2/efeitos dos fármacos , Inibidores de Protease Viral/química , Proteases Virais/metabolismo , Antivirais/farmacologia , Cristalização , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Análise Multivariada , Ligação Proteica , Conformação Proteica , Estereoisomerismo , Relação Estrutura-Atividade , Inibidores de Protease Viral/farmacologia
3.
Nat Prod Res ; 32(10): 1123-1129, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28446025

RESUMO

Obesity is the worst health risk worldwide, which is linked to a number of diseases. Pancreatic lipase is considered as an affective cause of obesity and can be a major target for controlling the obesity. The present study was designed to find out best phytochemicals against pancreatic lipase through molecular docking combined with molecular dynamics (MD) simulation. For this purpose, a total of 3770 phytochemicals were docked against pancreatic lipase and ranked them on the basis of binding affinity. Finally, 10 molecules (Kushenol K, Rosmarinic acid, Reserpic acid, Munjistin, Leachianone G, Cephamycin C, Arctigenin, 3-O-acetylpadmatin, Geniposide and Obtusin) were selected that showed strong bonding with the pancreatic lipase. MD simulations were performed on top five compounds using AMBER16. The simulated complexes revealed stability and ligands remained inside the binding pocket. This study concluded that these finalised molecules can be used as drug candidate to control obesity.


Assuntos
Inibidores Enzimáticos/farmacologia , Lipase/antagonistas & inibidores , Lipase/química , Compostos Fitoquímicos/farmacologia , Inibidores Enzimáticos/química , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Compostos Fitoquímicos/química , Plantas Medicinais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...