Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(5): 4474-4482, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36802485

RESUMO

Semiconductor colloidal nanoplatelets based of CdSe have excellent optical properties. Their magneto-optical and spin-dependent properties can be greatly modified by implementing magnetic Mn2+ ions, using concepts well established for diluted magnetic semiconductors. A variety of magnetic resonance techniques based on high-frequency (94 GHz) electron paramagnetic resonance in continuous wave and pulsed mode were used to get detailed information on the spin structure and spin dynamics of Mn2+ ions in core/shell CdSe/(Cd,Mn)S nanoplatelets. We observed two sets of resonances assigned to the Mn2+ ions inside the shell and at the nanoplatelet surface. The surface Mn demonstrates a considerably longer spin dynamics than the inner Mn due to lower amount of surrounding Mn2+ ions. The interaction between surface Mn2+ ions and 1H nuclei belonging to oleic acid ligands is measured by means of electron nuclear double resonance. This allowed us to estimate the distances between the Mn2+ ions and 1H nuclei, which equal to 0.31 ± 0.04, 0.44 ± 0.09, and more than 0.53 nm. This study shows that the Mn2+ ions can serve as atomic-size probes for studying the ligand attachment to the nanoplatelet surface.

2.
Rev Neurosci ; 33(5): 531-554, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34983132

RESUMO

The current prevalence of neurodevelopmental, neurodegenerative diseases, stroke and brain injury stimulates studies aimed to identify new molecular targets, to select the drug candidates, to complete the whole set of preclinical and clinical trials, and to implement new drugs into routine neurological practice. Establishment of protocols based on microfluidics, blood-brain barrier- or neurovascular unit-on-chip, and microphysiological systems allowed improving the barrier characteristics and analyzing the regulation of local microcirculation, angiogenesis, and neurogenesis. Reconstruction of key mechanisms of brain development and even some aspects of experience-driven brain plasticity would be helpful in the establishment of brain in vitro models with the highest degree of reliability. Activity, metabolic status and expression pattern of cells within the models can be effectively assessed with the protocols of system biology, cell imaging, and functional cell analysis. The next generation of in vitro models should demonstrate high scalability, 3D or 4D complexity, possibility to be combined with other tissues or cell types within the microphysiological systems, compatibility with bio-inks or extracellular matrix-like materials, achievement of adequate vascularization, patient-specific characteristics, and opportunity to provide high-content screening. In this review, we will focus on currently available and prospective brain tissue in vitro models suitable for experimental and preclinical studies with the special focus on models enabling 4D reconstruction of brain tissue for the assessment of brain development, brain plasticity, and drug kinetics.


Assuntos
Barreira Hematoencefálica , Encéfalo , Humanos , Neovascularização Patológica , Plasticidade Neuronal , Estudos Prospectivos , Reprodutibilidade dos Testes
3.
Front Aging Neurosci ; 9: 245, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28798684

RESUMO

Impairment of hippocampal adult neurogenesis in aging or degenerating brain is a well-known phenomenon caused by the shortage of brain stem cell pool, alterations in the local microenvironment within the neurogenic niches, or deregulation of stem cell development. Environmental enrichment (EE) has been proposed as a potent tool to restore brain functions, to prevent aging-associated neurodegeneration, and to cure neuronal deficits seen in neurodevelopmental and neurodegenerative disorders. Here, we report our data on the effects of environmental enrichment on hippocampal neurogenesis in vivo and neurosphere-forming capacity of hippocampal stem/progenitor cells in vitro. Two models - Alzheimer's type of neurodegeneration and physiological brain aging - were chosen for the comparative analysis of EE effects. We found that environmental enrichment greatly affects the expression of markers specific for stem cells, progenitor cells and differentiated neurons (Pax6, Ngn2, NeuroD1, NeuN) in the hippocampus of young adult rats or rats with Alzheimer's disease (AD) model but less efficiently in aged animals. Application of time-lag mathematical model for the analysis of impedance traces obtained in real-time monitoring of cell proliferation in vitro revealed that EE could restore neurosphere-forming capacity of hippocampal stem/progenitor cells more efficiently in young adult animals (fourfold greater in the control group comparing to the AD model group) but not in the aged rats (no positive effect of environmental enrichment at all). In accordance with the results obtained in vivo, EE was almost ineffective in the recovery of hippocampal neurogenic reserve in vitro in aged, but not in amyloid-treated or young adult, rats. Therefore, EE-based neuroprotective strategies effective in Aß-affected brain could not be directly extrapolated to aged brain.

4.
Rev Neurosci ; 26(2): 143-59, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25528762

RESUMO

Neuroinflammation is as an important component of pathogenesis in many types of brain pathology. Immune mechanisms regulate neuroplasticity, memory formation, neurogenesis, behavior, brain development, cognitive functions, and brain metabolism. It is generally believed that essential homeostatic functions of astrocytes - astroglia-neuron metabolic coupling, gliovascular control, regulation of proliferation, and migration of cells in the neurogenic niches - are compromised in neuroinflammation resulting in excitotoxicity, neuronal and glial cell death, and alterations of intercellular communication. Viral neuroinfection, release of non-coding RNAs from the cells at the sites of brain injury or degeneration, and application of siRNA or RNA aptamers as therapeutic agents would require dsRNA-sensing pathways in the cells of neuronal and non-neuronal origin. In this review, we analyze the data regarding the role of astrocytes in dsRNA-initiated innate immune response in neuroinflammation and their contribution to progression of neurodegenerative and neurodevelopmental pathology.


Assuntos
Astrócitos/metabolismo , DNA/genética , Doenças Neurodegenerativas/metabolismo , Transdução de Sinais , Receptor 3 Toll-Like/metabolismo , Animais , Astrócitos/citologia , Humanos , Doenças Neurodegenerativas/genética , Neurogênese , Receptor 3 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...